Skip to main content
Log in

The quantum chemical basis of the Fischer-Tropsch reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The electronic features determining the reactivity of CO and CH X on transition metal surfaces are reviewed. Focus is on the relevant features that control the Fischer-Tropsch synthesis. The CO dissociation reaction path is controlled by the interaction with the CO bond strength weakening 2π* orbitals. CH3 fragment adsorption is controlled by σ type molecule fragment orbitals. This directs the CH3 fragment to the atop adsorption site on those late transition metals that have strongly interacting d-valence electrons. Adsorbed C and O have a stronger bond strength than CH3 because they have also unoccupied atomic p orbitals available to bonding. Because the bond strength of adsorbed C and O increases more rapidly with depletion of d-valence electron occupation than that of CO, the activation energy for CO dissociation decreases for the corresponding transition metals towards the left of the periodic system. The rate of methanation versus chain growth is controlled by the strength of the M-CH3 bond versus the activation energy of carbon-carbon bond formation. The first appears to be more sensitive to variations in metal carbon bond strength than the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Araki and V. Ponec, J. Catal. 44 (1976) 439;

    Google Scholar 

  2. P. Biloen and W.M.H. Sachtler, Adv. in Catal. 30 (1981) 165.

    Google Scholar 

  3. Y. Mori, T. Mori, A. Miyamoto, N. Takahashi, T. Hattori and Y. Murakami, J. Phys. Chem. 93 (1989) 2039.

    Google Scholar 

  4. R.C. Baetzold, J. Phys. Chem. 88 (1984) 5583.

    Google Scholar 

  5. A.T. Bell, Catal. Rev. -Sci. Eng. 23 (1981) 23.

    Google Scholar 

  6. A. de Koster, thesis, Eindhoven University of Technology, The Netherlands, 1989.

    Google Scholar 

  7. A. de Koster and R.A. van Santen, J. Vac. Sci. Technol. A6 (1988) 1128.

    Google Scholar 

  8. A. de Koster, A.P.J. Jansen, J.J.C. Geerlings and R.A. van Santen, Faraday Discuss., Chem. Soc. 87 (1989) 263.

    Google Scholar 

  9. A.B. Anderson, J. Chem. Phys. 62 (1975) 1187.

    Google Scholar 

  10. J.B. Benziger, App. Surf. Sci. 6 (1980) 105.

    Google Scholar 

  11. E.M. Shustorovich, Surf. Sci. Rep. 6 (1986) 1;

    Google Scholar 

  12. E.M. Shustorovich, J. Am. Chem. Soc. 106 (1984) 6479.

    Google Scholar 

  13. R.A. van Santen and W.M.H. Sachtler, Adv. Catal. 26 (1977) 69.

    Google Scholar 

  14. S.-S. Sung and R. Hoffmann, J. Am. Chem. Soc. 107 (1985) 578.

    Google Scholar 

  15. Ch. Zheng, Y. Apeloig and R. Hoffmann, J. Am. Chem. Soc. 110 (1988) 749.

    Google Scholar 

  16. R.A. van Santen and E.J. Baerends, in:Theoretical Models of Chemical Bonding, ed. Z.B. Maksic, part 4 (Springer-Verlag) to appear.

  17. G. Blyholder, J. Phys. Chem. 68 (1964) 2772.

    Google Scholar 

  18. R.A. van Santen, J. Mol. Struct. 173 (1988) 157.

    Google Scholar 

  19. P. Hollins and J. Pritchard, Progr. Surf. Sci. 19 (1985) 275.

    Google Scholar 

  20. J.C. Bertolini and B. Tardy, Surf. Sci. 102 (1981) 131.

    Google Scholar 

  21. C. Backx and C.P.M. de Groot, unpublished results.

  22. C. Minot, M.A. van Hove and G.A. Somorjai, Surf. Sci. 127 (1982) 441.

    Google Scholar 

  23. J. Schule, P. Siegbahn and U. Wahlgren, J. Chem. Phys. 89 (1988) 6982.

    Google Scholar 

  24. M.B. Lee, Q.Y. Yang, S.L. Tang and S.T. Ceyer, J. Chem. Phys. 85 (1986) 1693.

    Google Scholar 

  25. S.T. Ceyer, J.D. Beckerle, M.B. Lee, S.L. Tang, Q.Y. Yang and M.A. Hines, J. Vac. Sci. Technol. A4 (1987) 501.

    Google Scholar 

  26. M.B. Lee, Q.Y. Yang and S.T. Ceyer, J. Chem. Phys. 87 (1987) 2724.

    Google Scholar 

  27. R.W. Joyner, J.B. Pendry, D.K. Saldin and S.R. Tennison, Surf. Sci. 138 (1984) 84.

    Google Scholar 

  28. R.A. van Santen, Progress in Surf. Sci. 25 (1987) 253.

    Google Scholar 

  29. J.W. Niemantsverdriet, A.M. van der Kraan, W.L. van Dijk and H.S. van der Baan, J. Phys. Chem. 84 (1980) 3363.

    Google Scholar 

  30. J.J.C. Geerlings, M.C. Zonnevylle and C.P.M. de Groot, Catal. Lett. 5 (1990) 309.

    Google Scholar 

  31. A.B. Anderson, R.W. Grimes and S.Y. Hong, J. Phys. Chem. 91 (1987) 4245.

    Google Scholar 

  32. T. Koerts and R.A. van Santen, Catal. Lett. 6 (1990) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Santen, R.A., De Koster, A. & Koerts, T. The quantum chemical basis of the Fischer-Tropsch reaction. Catal Lett 7, 1–14 (1990). https://doi.org/10.1007/BF00764488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00764488

Navigation