Skip to main content
Log in

Plastocyanin: Structural and functional analysis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 Å resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between theChlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 Å rms deviation in the Cα positions between theChlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel β-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochromef and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (∼4 Å) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (∼12–15 Å) and involves the nearly conserved residue Tyr-83 in the negative patch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, Z., and Malkin, R. (1989).Biochim. Biophys. Acta 975 158–163.

    Google Scholar 

  • Adman, E. T. (1991).Adv. Protein Chem. 42 145–197.

    Google Scholar 

  • Adman, E. T., and Jensen, L. H. (1981).Israel J. Chem. 21 8–12.

    Google Scholar 

  • Aitken (1975).Biochem. J. 149 675–683.

    Google Scholar 

  • Anderson, G. P., Sanderson, D. G., Lee, C. H., Durell, S., Anderson, L. B., and Gross, E. L. (1987).Biochim. Biophys. Acta 894 386–398.

    Google Scholar 

  • Baker, E. N. (1988).J. Mol. Biol. 203 1071–1095.

    Google Scholar 

  • Baker, E. N. (1991).J. Inorg. Biochem. 43 162.

    Google Scholar 

  • Bengis, C., and Nelson, N. (1975).J. Biol. Chem. 250 2783–2788.

    Google Scholar 

  • Beoku-Betts, D., Chapman, S. K., Knox, C. V., and Sykes, A. G. (1985).Inorg. Chem. 24 1677–1681.

    Google Scholar 

  • Beratan, D. N., Betts, J. N., and Onuchic, J. N. (1991).Science 252 1285–1288.

    Google Scholar 

  • Bottin, H., and Mathis, P. (1987).Biochim. Biophys. Acta 892 91–98.

    Google Scholar 

  • Boulter, D., Haslett, B. G., Peacock, D., Ramshaw, J. A. M., and Scawen, M. D. (1977).Int. Rev. Biochem. 13 3–40.

    Google Scholar 

  • Briggs, L. M., Pecoraro, V. L., and McIntosh, L. (1990).Plant Mol. Biol. 15 633–642.

    Google Scholar 

  • Bryant, D. A. (1992). InThe PhotoSystems: Structure, Function and Molecular Biology (Barber, J., ed.), Elsevier Science Publishers, Amsterdam, pp. 501–549.

    Google Scholar 

  • Canters, G. W., and van de Kamp, M. (1992).Curr. Opinion Struct. Biol. 2 859–869.

    Google Scholar 

  • Chang, T. K., Iverson, S. A., Rodrigues, C. G., Kiser, C. N., Lew, A. Y. C., Germanas, J. P., and Richards, J. H. (1991).Proc. Natl. Acad. Sci. USA 88 1325–1329.

    Google Scholar 

  • Chazin, W. J., and Wright, P. E. (1988).J. Mol. Biol. 202 623–636.

    Google Scholar 

  • Chen, L., Durley, R., Poliks, B. J., Hamada, K., Chen, Z., Mathews, F. S., Davidson, V. L., Satow, Y., Huizinga, E., Vellieux, F. M. D., and Hol, W. G. J. (1992).Biochemistry 31 4959–4964.

    Google Scholar 

  • Chitnis, P. R., Purvis, D., and Nelson, N. (1991).J. Biol. Chem. 266 20146–20151.

    Google Scholar 

  • Church, W. B., Guss, J. M., Potter, J. J., and Freeman, H. C. (1986).J. Biol. Chem. 261 234–237.

    Google Scholar 

  • Church, W. B., Collyer, C. A., Garrett, T. P. J., Guss, J. M., Murata, M., and Freeman, H. C. (1987). InThree-Dimensional Structures and Drug Design (Iitaka, Y., and Itai, A., eds.), University of Tokyo Press, pp. 45–63.

  • Collyer, C. A., Guss, J. M., Sugimura, Y., Yoshizaki, F., and Freeman, H. C. (1990).J. Mol. Biol. 211 617–632.

    Google Scholar 

  • Colman, P. M., Freeman, H. C., Guss, J. M., Murata, M., Norris, V. A., Ramshaw, J. A. M., and Venkatappa, M. P. (1978).Nature (London)272 319–324.

    Google Scholar 

  • Connolly, M. L. (1983).J. Appl Crystallogr. 16 548–558.

    Google Scholar 

  • Cookson, D. J., Hayes, M. T., and Wright, P. E. (1980a).Nature (London)283 682–683.

    Google Scholar 

  • Cookson, D. J., Hayes, M. T., and Wright, P. E. (1980b).Biochim. Biophys. Acta 591 162–176.

    Google Scholar 

  • de Silva, D. G. A. H., Powls, R., and Sykes, A. G. (1988).Biochim. Biophys. Acta 933 460–469.

    Google Scholar 

  • Driscoll, P. C., Hill, H. A. O., and Redfield, C. (1987).Eur. J. Biochem. 170 279–292.

    Google Scholar 

  • Durell, S. R., Labanowski, J. K., and Gross, E. L. (1990).Arch., Biochem. Biophys. 277 241–254.

    Google Scholar 

  • Durley, R., Chen, L., Lim, L. W., Mathews, F. S., and Davidson, V. L. (1993).Protein Sci. 2 739–752.

    Google Scholar 

  • Garrett, T. P. J., Clingeleffer, D. J., Guss, J. M., Rogers, S. J., and Freeman, H. C. (1984).J. Biol. Chem. 259 2822–2825.

    Google Scholar 

  • Gazo, J., Bersuker, I. B., Garaj, J., Kabesova, M. Kohout, J., Langfelderova, H., Melnik, M., Serator, M., and Valach, F. (1976).Coord. Chem. Rev. 19 253–297.

    Google Scholar 

  • Guss, J.M., and Freeman, H.C. (1983).J. Mol. Biol. 169 521–563.

    Google Scholar 

  • Guss, J. M., Harrowell, P. R., Murata, M., Norris, V. A., and Freeman, H. C. (1986).J. Mol. Biol. 192 361–387.

    Google Scholar 

  • Guss, J. M., Bartunik, H. D., and Freeman, H. C. (1992).Acta Crystallogr. B48 790–811.

    Google Scholar 

  • Haehnel, M. (1984).Annu. Rev. Plant Physiol. 35 659–693.

    Google Scholar 

  • Haehnel, M., Ratajczak, R., and Robenek, H. (1989).J. Cell Biol. 108 1397–1405.

    Google Scholar 

  • Han, J., Adman, E. T., Beppu, T., Codd, R., Freeman, H. C., Huq, L., Loehr, T. M., and Sanders-Loehr, J. (1991).Biochemistry 30 10904–10913.

    Google Scholar 

  • Hatakana, H., Sonoike, K., Hirano, M., and Katoh, S. (1993).Biochim. Biophys. Acta 1141 45–51.

    Google Scholar 

  • He, S., Modi, S., Bendall, D. S., and Gray, J. C. (1991).EMBO J. 10 4011–4016.

    Google Scholar 

  • Hippler, M., Ratajczak, R., and Haehnel, W. (1989).FEBS Lett. 250 280–284.

    Google Scholar 

  • Ho, K. K. and Krogmann, D. W. (1984).Biochim. Biophys. Acta 766 310–316.

    Google Scholar 

  • Jackman, M. P., Sinclair-Day, J. D., Sisley, M. J., Sykes, A. G., Denys, L. A., and Wright, P. E. (1987).J. Am. Chem. Soc. 109 6443–6449.

    Google Scholar 

  • Jackman, M. P., McGinnis, J., Powls, R., Salmon, G. A., and Sykes, A. G. (1988).J. Am. Chem. Soc. 110 5880–5887.

    Google Scholar 

  • Kabsch, W. (1978).Acta Crystallogr. A34 827–828.

    Google Scholar 

  • Karlsson, B. G., Nordling, M., Pascher, T., Tsai, L., Sjölin, L., and Lundberg, L. G. (1991).Protein Eng. 4 343–349.

    Google Scholar 

  • Katoh, S., Shiratori, I., and Takamiya, A. (1962).J. Biochem. (Tokyo)51 32–40.

    Google Scholar 

  • Korszun, Z. R. (1987).J. Mol. Biol. 196 413–419.

    Google Scholar 

  • Kraulis, P. J. (1991).J. Appl. Crystallogr. 24 946–950.

    Google Scholar 

  • Krauss, N., Hinrichs, W., Witt, I., Fromme, D., Pritzkow, W., Dauter, Z., Betzel, C., Wilson, K. S., Witt, H. T., and Saenger, W. (1993).Nature (London)361 326–331.

    Google Scholar 

  • Last, D. I., and Gray, J. C. (1990).Plant Mol. Biol. 14 229–238.

    Google Scholar 

  • Li, H. H., and Merchant, S. (1992).J. Biol. Chem. 267 9368–9375.

    Google Scholar 

  • Martinez, S. E., Szczepaniak, A., Smith, J. L., and Cramer, W. A. (1991).Biophys. J. 59, 524a.

    Google Scholar 

  • Merchant, S., and Bogorad, L. (1986).Mol. Cell. Biol. 6 462–469.

    Google Scholar 

  • Merchant, S., Hill, K., Kim, J. H., Thompson, J., Zaitlin, D., and Bogorad, L. (1990).J. Biol. Chem. 265 12372–12379.

    Google Scholar 

  • Modi, S., Nordling, M., Lundberg, L. G., Hansson, O., and Bendall, D. S. (1992a).Biochim. Biophys. Acta 1102 85–90.

    Google Scholar 

  • Modi, S., McLaughlin, E., Bendall, D. S., He, S., and Gray, J. C. (1992b).Bull. Magn. Reson. 14 159–164.

    Google Scholar 

  • Moore, J. M., Chazin, W. J., Powls, R., and Wright, P. E. (1988).Biochemistry 27 7806–7816.

    Google Scholar 

  • Moore, J. M., Lepre, C. A., Gippert, G. P., Chazin, W. J., Case, D. A., and Wright, P. E. (1991).J. Mol. Biol. 221 533–555.

    Google Scholar 

  • Morand, L. Z., Frame, M. Z., Colvert, K. K., Johnson, D. A., Krogmann, D. W., and Davis, D. J. (1989).Biochemistry 28 8039–8047.

    Google Scholar 

  • Moser, C. C., Keske, J. M., Warncke, K., Faird, R. S., and Dutton, P. L. (1992).Nature (London)355 796–802.

    Google Scholar 

  • Murphy, L. M., Strange, R. W., Karlsson, B. G., Lundberg, L. G., Pascher, T., Reinhammar, B., and Hasnain, S. S. (1993).Biochemistry 32 1965–1975.

    Google Scholar 

  • Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1991).J. Mol. Biol. 218 327–330.

    Google Scholar 

  • Nar, H., Huber, R., Messerschmidt, A., Filippou, A. G., Barth, M., Jaquinod, M., van de Kamp, M., and Canters, G. W. (1992a).Eur. J. Biochem. 205 1123–1129.

    Google Scholar 

  • Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1992b).FEBS Lett. 306 119–124.

    Google Scholar 

  • Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1992c).J. Mol. Biol. 221 765–772.

    Google Scholar 

  • Nielson, O. S., and Gausing, K. (1987).FEBS Lett. 225 159–162.

    Google Scholar 

  • Nordling, M., Olausson, T., and Lundberg, L. G. (1990).FEBS Lett. 276 98–102.

    Google Scholar 

  • Nordling, M., Sigfridsson, K., Young, S., Lundberg, L. G., and Hansson, O. (1991).FEBS Lett. 291 327–330.

    Google Scholar 

  • Petratos, K., Dauter, Z., and Wilson, K. S. (1988).Acta Crystallogr. B44 628–636.

    Google Scholar 

  • Qin, L., and Kostic, N. M. (1992).Biochemistry 31 5145–5150.

    Google Scholar 

  • Qin, L., and Kostic, N. M. (1993).Biochemistry 32 6073–6080.

    Google Scholar 

  • Quinn, J., Li, H. H., Singer, J., Morimoto, B., Mets, L., Kindle, K., and Merchant, S. (1993).J. Biol. Chem. 268 7832–7841.

    Google Scholar 

  • Redinbo, M. R., Cascio, D., Choukair, M. K., Rice, D., Merchant, S., and Yeates, T. O. (1993).Biochemistry,32 10560–10567.

    Google Scholar 

  • Roberts, V. A., Freeman, H. C., Olson, A. J., Tainer, J. A., and Getzoff, E. D. (1991).J. Biol. Chem. 266 13431–13441.

    Google Scholar 

  • Romero, A., Hoitink, C. W. G., Nar, H., Huber, R., Messerschmidt, A., and Canters, G. W. (1993).J. Mol. Biol. 229 1007–1021.

    Google Scholar 

  • Sandmann, G., Reck, H., Kessler, E., and Böger, P. (1983).Arch. Microbiol. 134 23–27.

    Google Scholar 

  • Segal, M. G., and Sykes, A. G. (1978).J. Am. Chem. Soc. 100 4585–4592.

    Google Scholar 

  • Solomon, E. I., and Lowery, M. D. (1993).Science 259 1575–1581.

    Google Scholar 

  • Steppuhn, J., Hermans, J., Nechushtai, R., Ljungberg, V., Thummler, F., Lottspeich, F., and Herrmann, R. G. (1988).FEBS Lett. 237 218–224.

    Google Scholar 

  • Sykes, A. G. (1985).Chem. Soc. Rev. 14 283–315.

    Google Scholar 

  • Sykes, A. G. (1991).Struct. Bonding 75 175–224.

    Google Scholar 

  • Takabe, T., and Ishikawa, H. (1989).J. Biochem. 105 98–102.

    Google Scholar 

  • Takabe, T., Ishikawa, H., Niwa, S., and Itoh, S. (1993).J. Biochem. (Tokyo)94 1901–1911.

    Google Scholar 

  • Takabe, T., Ishikawa, H., Niwa, S., and Tanaka, Y. (1984).J. Biochem. (Tokyo)96 385–393.

    Google Scholar 

  • Ugurbil, K., Norton, R. S., Allerhand, A., and Bersohn, R. (1977).Biochemistry 16 886–894.

    Google Scholar 

  • van de Kamp, M., Silverstrini, M. C., Brunori, M., Van Beeumen, J., Hali, F. C., and Canters, G. W. (1990).Eur. J. Biochem. 194 109–118.

    Google Scholar 

  • Widger, W. R. (1991).Photosynth. Res. 30 71–84.

    Google Scholar 

  • Wood, P. M., (1978).Eur. J. Biochem. 87 9–19.

    Google Scholar 

  • Wynn, R. M., and Malkin, R. (1988).Biochemistry 27 5863–5869.

    Google Scholar 

  • Wynn, R. M., Omaha, J., and Malkin, R. (1989).Biochemistry 28 5554–5560.

    Google Scholar 

  • Zhou, J. S., and Kostic, N. M. (1993).Biochemistry 32 4539–4546.

    Google Scholar 

  • Zhou, J. S., Brothers, H. M., Neddersen, J. P., Peerey, L. M., Cotton, T. M., and Kostic, N. M. (1992).Bioconjugate Chem. 3 382–390.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redinbo, M.R., Yeates, T.O. & Merchant, S. Plastocyanin: Structural and functional analysis. J Bioenerg Biomembr 26, 49–66 (1994). https://doi.org/10.1007/BF00763219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763219

Key words

Navigation