Skip to main content
Log in

Sodium-transport NADH-quinone reductase of a marineVibrio alginolyticus

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The respiratory chain of a marine bacterium,Vibrio alginolyticus, required Na+ for maximum activity, and the site of Na+-dependent activation was localized on the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase extruded Na+ as a direct result of redox reaction. It was composed of three subunits, α, β, and γ, with apparentMr of 52, 46, and 32 KDa, respectively. The reduction of ubiquinone-1 to ubiquinol proceeded via ubisemiquinone radicals. The former reaction was catalyzed by the FAD-containing β subunit. This reaction showed no specific requirement for Na+. For the formation of ubiquinol, the presence of the γ subunit and the FMN-containing α subunit was essential. The latter reaction specifically required Na+ for activity and was strongly inhibited by 2-n-heptyl-4-hydroxyquinolineN-oxide. It was assigned to the coupling site for Na+ transport. The mode of energy coupling of redox-driven Na+ pump was compared with those of decarboxylase- and ATP-driven Na+ pumps found in other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dibrov, P. A., Kostyrko, V. A., Lazarova, R. L., Skulachev, V. P., and Smirnova, I. A. (1986a).Biochim. Biophys. Acta 850, 449–457.

    Google Scholar 

  • Dibrov, P. A., Lazarova, R. L., Skulachev, V. P., and Verkhovskaya, M. L. (1986b).Biochim. Biophys. Acta 850, 458–465.

    Google Scholar 

  • Dimroth, P. (1987).Microbiol. Rev. 51, 320–340.

    Google Scholar 

  • Dimroth, P., and Thomer, A. (1983).Eur. J. Biochem. 137, 107–112.

    Google Scholar 

  • Drapeau, G. R., and MacLeod, R. A. (1963).Biochem. Biophys. Res. Commun. 12, 111–115.

    Google Scholar 

  • Drapeau, G. R., Matula, T. I., and MacLeod, R. A. (1966).J. Bacteriol. 92, 63–71.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1984).Biochim. Biophys. Acta 767, 470–478.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1986).FEBS Lett. 202, 327–330.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1987a).Biochim. Biophys. Acta 890, 47–54.

    Google Scholar 

  • Hayashi, M., and Unemoto, T. (1987b).Biochem. (Life Sci. Adv.)6, 157–161.

    Google Scholar 

  • Ken-Dror, S., Shnaiderman, R., and Avi-Dor, Y. (1984).Arch. Biochem. Biophys. 229, 640–649.

    Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. (1986a).Arch. Biochem. Biophys. 244, 122–127.

    Google Scholar 

  • Ken-Dror, S., Lanyi, J. K., Schobert, B., Silver, B., and Avi-Dor, Y. (1986b).Arch. Biochem. Biophys. 244, 766–772.

    Google Scholar 

  • Khanna, G., Devoe, L., Brown, L., Niven, D. F., and MacLeod, R. A. (1984).J. Bacteriol. 157, 59–63.

    Google Scholar 

  • Kitada, M., and Horikoshi, K. (1977).J. Bacteriol. 131, 784–788.

    Google Scholar 

  • Kröger, A., and Dadák, V. (1969).Eur. J. Biochem. 11, 328–340.

    Google Scholar 

  • Krulwich, T. A. (1986).J. Membr. Biol. 89, 113–125.

    Google Scholar 

  • Kushner, D. J. (1978). InMicrobial Life in Extreme Environment (Kushner, D. J., ed.), Academic Press, London, pp. 317–368.

    Google Scholar 

  • Lanyi, J. K. (1979).Biochim. Biophys. Acta 559, 377–397.

    Google Scholar 

  • Lanyi, J. K., and Weber, H. J. (1980).J. Biol. Chem. 255, 243–250.

    Google Scholar 

  • Laubinger, W., and Dimroth, P. (1987).Eur. J. Biochem. 168, 475–480.

    Google Scholar 

  • Lewis, R. J., Belkina, S., and Krulwich, T. A. (1980).Biochem. Biophys. Res. Commun. 95, 857–863.

    Google Scholar 

  • MacLeod, R. A. (1965).Bacteriol. Rev. 29, 9–23.

    Google Scholar 

  • MacLeod, R. A., and Hori, A. (1960).J. Bacteriol. 80, 464–471.

    Google Scholar 

  • MacLeod, R. A., Claridge, C. A., Hori, A., and Murray, J. F. (1958).J. Biol. Chem. 232, 829–834.

    Google Scholar 

  • Nakamura, T., Tokuda, H., and Unemoto, T. (1982).Biochim. Biophys. Acta 692, 389–396.

    Google Scholar 

  • Niven, D. F., and MacLeod, R. A. (1978).J. Bacteriol. 134, 737–743.

    Google Scholar 

  • Niven, D. F., and MacLeod, R. A. (1980).J. Bacteriol. 142, 603–607.

    Google Scholar 

  • Ragan, C. I. (1987).Curr. Top. Bioenerg. 15, 1–36.

    Google Scholar 

  • Reichelt, J. L., and Baumann, P. (1974).Arch. Microbiol. 97, 329–345.

    Google Scholar 

  • Schobert, B., and Lanyi, J. K. (1982).J. Biol. Chem. 257, 10306–10313.

    Google Scholar 

  • Skulachev, V. P. (1987). InIon Transport in Prokaryotes (Rosen, B. P., and Silver, S., eds.), Academic Press, London, pp. 131–164.

    Google Scholar 

  • Sprott, G. D., and MacLeod, R. A. (1974).J. Bacteriol. 117, 1043–1054.

    Google Scholar 

  • Szarkowska, L., and Klingenberg, M. (1963).Biochem. Z. 338, 674–697.

    Google Scholar 

  • Takada, Y., Fukunaga, N., and Sasaki, S. (1981).J. Gen. Appl. Microbiol. 27, 327–337.

    Google Scholar 

  • Takada, Y., Fukunaga, N., and Sasaki, S. (1988).Plant Cell Physiol. 29, 207–214.

    Google Scholar 

  • Thompson, J., and MacLeod, R. A. (1974).J. Bacteriol. 117, 1055–1064.

    Google Scholar 

  • Tokuda, H. (1983).Biochem. Biophys. Res. Commun. 114, 113–118.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1981).Biochem. Biophys. Res. Commun. 102, 265–271.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1982).J. Biol. Chem. 257, 10007–10014.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1983).J. Bacteriol. 156, 636–643.

    Google Scholar 

  • Tokuda, H., and Unemoto, T. (1984).J. Biol. Chem. 259, 7785–7790.

    Google Scholar 

  • Tokuda, H., Sugasawa, M., and Unemoto, T. (1982).J. Biol. Chem. 257, 788–794.

    Google Scholar 

  • Tomlinson, N., and MacLeod, R. A. (1957).Can. J. Microbiol. 3, 627–638.

    Google Scholar 

  • Tsuchiya, T., and Shinoda, S. (1985).J. Bacteriol. 162, 794–798.

    Google Scholar 

  • Udagawa, T., Unemoto, T., and Tokuda, H. (1986).J. Biol. Chem. 261, 2616–2622.

    Google Scholar 

  • Unemoto, T., and Hayashi, M. (1979).J. Biochem. 85, 1461–1467.

    Google Scholar 

  • Unemoto, T., Tsuruoka, T., and Hayashi, M. (1973).Can. J. Microbiol. 19, 563–571.

    Google Scholar 

  • Unemoto, T., Hayashi, M., Kozuka, Y., and Hayashi, M. (1974). InEffect of the Ocean Environment on Microbial Activities (Colwell, R. R., and Morita, R. Y., eds.), University Park Press, Baltimore, pp. 46–71.

    Google Scholar 

  • Unemoto, T., Hayashi, M., and Hayashi, M. (1977).J. Biochem. 82, 1389–1395.

    Google Scholar 

  • Unemoto, T., Hayashi, M., and Hayashi, M. (1981).J. Biochem. 90, 619–628.

    Google Scholar 

  • Watanabe, H., Takimoto, A., and Nakamura, T. (1977).J. Biochem. 82, 1707–1714.

    Google Scholar 

  • Wikström, M., and Krab, K. (1980).Curr. Top. Bioenerg. 10, 51–101.

    Google Scholar 

  • Wong, P. T. S., Thompson, J., and MacLeod, R. A. (1969).J. Biol. Chem. 244, 1016–1025.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unemoto, T., Hayashi, M. Sodium-transport NADH-quinone reductase of a marineVibrio alginolyticus . J Bioenerg Biomembr 21, 649–662 (1989). https://doi.org/10.1007/BF00762684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762684

Key Words

Navigation