Skip to main content
Log in

Vacuolar H+-translocating ATPases from plants: Structure, function, and isoforms

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The vacuolar H+-translocating ATPase (V-type ATPase) plays a central role in the growth and development of plant cells. In a mature cell, the vacuole is the largest intracellular compartment, occupying about 90% of the cell volume. The proton electrochemical gradient (acid inside) formed by the vacuolar ATPase provides the primary driving force for the transport of numerous ions and metabolites against their electrochemical gradients. The uptake and release of solutes across the vacuolar membrane is fundamental to many cellular processes, such as osmoregulation, signal transduction, and metabolic regulation. Vacuolar ATPases may also reside on endomembranes, such as Golgi and coated vesicles, and thus may participate in intracellular membrane traffic, sorting, and secretion.

Plant vacuolar ATPases are large complexes (400–650 kDa) composed of 7–10 different subunits. The peripheral sector of 5–6 subunits includes the nucleotide-binding catalytic and regulatory subunits of ∼ 70 and ∼ 60 kDa, respectively. Six copies of the 16-kDa proteolipid together with 1–3 other subunits make up the integral sector that forms the H+ conducting pathway. Isoforms of plant vacuolar ATPases are suggested by the variations in subunit composition observed among and within plant species, and by the presence of a small multigene family encoding the 16-kDa and 70-kDa subunits. Multiple genes may encode isoforms with specific properties required to serve the diverse functions of vacuoles and endomembrane compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

N,N′-dicyclohexylcarbodiimide

CAM:

Crassulacean acid metabolism

Nbd-Cl:

7-chloro-4-nitrobenzo-2-oxa-1,3-diazole

Bz-ATP:

3-O-(4-benzoyl)benzolyadenosine 5′-triphosphate

DIDS:

4,4′-diisothiocyanostilbene-2,2′-disulfonic acid

NEM:

N-ethylmaleimide

IP3 :

inositol-1,4,5-triphosphate

H+-PPase:

H+-translocating pyrophosphatase

V-type:

vacuolar-type

P-type:

phosphorylated intermediate- or plasma membrane-type

F-type:

F1Fo-type

V-ATPase:

vacuolar-type H+-ATPase

References

  • Adachi, I., Arai, H., Pimental, R., and Forgac, M. (1990).J. Biol. Chem. 265, 960–966.

    Google Scholar 

  • Alexandre, J., Lassalles, J. P., and Kado, R. T. (1990).Nature (London)343, 567–570.

    Google Scholar 

  • Ali, M. S., and Akazawa, T. (1986).Plant Physiol. 81, 222–227.

    Google Scholar 

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988).J. Biol. Chem. 263, 8796–8802.

    Google Scholar 

  • Arai, H., Pink, S., and Forgac, M. (1989).Biochemistry 28, 3075–3082.

    Google Scholar 

  • Assmann, S. M., Simoncini, L., and Schroeder, J. I., (1985).Nature (London)318, 285–287.

    Google Scholar 

  • Bennett, A. B., and Spanswick, R. M. (1983).J. Membr. Biol. 75, 21–31.

    Google Scholar 

  • Bennett, A. B., and Spanswick, R. M. (1984).Plant Physiol.,74, 545–548.

    Google Scholar 

  • Blackford, S., Rea, P. A., and Sanders, D. (1990).J. Biol. Chem. 265, 9617–9620.

    Google Scholar 

  • Blumwald, E., and Poole, R. J. (1987).Plant Physiol. 83, 884–887.

    Google Scholar 

  • Boller, T., and Wiemken, A. (1986).Ann. Rev. Plant Physiol. 37, 137–164.

    Google Scholar 

  • Bowman, B. J., Allen, R., Wechser, M. A., and Bowman, E. J. (1988).J. Biol. Chem. 263, 14002–14007.

    Google Scholar 

  • Bowman, E. J., Siebers, A., and Altendorf, K. (1988a).Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Google Scholar 

  • Bowman, E. J., Tenney, K., and Bowman, B. J. (1988b).J. Biol. Chem. 263, 13994–14001 [67kDa].

    Google Scholar 

  • Bremberger, C., Haschke, H.-P., and Luttge, U. (1988).Planta 175, 465–470.

    Google Scholar 

  • Briskin, D. P., Thornley, R. W., and Wyse, R. E. (1985).Plant Physiol. 78, 871–875.

    Google Scholar 

  • Chanson, A., and Taiz, L. (1985).Plant Physiol. 78, 232–240.

    Google Scholar 

  • Churchill, K. A., and Sze, H. (1984).Plant Physiol. 76, 490–497.

    Google Scholar 

  • Depta, H., Holstein, S. E. H., Robinson, D. G., Lutzelschwab, M., and Michalke, W. (1991).Planta 183, 434–442.

    Google Scholar 

  • Dupont, F. M., and Morrissey, P. J. (1992).Arch. Biochem. Biophys. 294, 341–346.

    Google Scholar 

  • DuPont, F. M., Tanada, C. K., and Hurkman, W. J. (1988).Plant Physiol. 86, 717–724.

    Google Scholar 

  • Evans, D. E., Briars, S. A., and Williams, L. E. (1991).J. Exp. Bot. 42, 285–303.

    Google Scholar 

  • Forgac, M. (1989).Physiol. Rev. 69, 765–796.

    Google Scholar 

  • Foury, F. (1990).J. Biol. Chem. 265, 18554–18560.

    Google Scholar 

  • Getz, H.-P. (1991).Planta 185, 261–268.

    Google Scholar 

  • Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., Manolson, M. F., Poole, R. J., Date, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M. (1989).Proc. Natl. Acad. Sci. USA 86, 6661–6665.

    Google Scholar 

  • Guern, J., Mathieu, Y., Kurkdjian, A., Manigault, P., Gillet, B., Beloeil, J.-C., and Lallemand, J.-Y. (1989).Plant Physiol. 89, 27–36.

    Google Scholar 

  • Guern, J., Felle, H., Mathieu, Y., and Kurkdjian, A. (1991).Int. Rev. Cytol. 127, 111–73.

    Google Scholar 

  • Harley, S. M., and Beevers, L. (1989).Plant Physiol. 91, 674–678.

    Google Scholar 

  • Harris, N. (1986).Annu. Rev. Plant Physiol. 37, 73–92.

    Google Scholar 

  • Hedrich, R., and Neher, E. (1987).Nature (London)329, 833–836.

    Google Scholar 

  • Hedrich, R., and Schroeder, J. I. (1989).Annu. Rev. Plant Physiol. 40, 539–569.

    Google Scholar 

  • Hedrich, R., Kurkdjian, A., Guern, J., and Flugge, U. I. (1989).EMBO J. 8, 2835–2841.

    Google Scholar 

  • Hirata, R., Ohsumi, Y., Nakano, A., Kawasaki, H., Suzuki, K., and Anraku, Y. (1990).J. Biol. Chem. 265, 6726–6733.

    Google Scholar 

  • Homeyer, U., Litek, K., Huchzermeyer, B., and Schultz, G. (1989).Plant Physiol. 89, 1388–1393.

    Google Scholar 

  • Hurley, D., and Taiz, L. (1989).Plant Physiol. 89, 391–395.

    Google Scholar 

  • Inatomi, K. I., Eya, S., Maeda, M., and Futai, M. (1989).J. Biol. Chem. 264, 10954–10959.

    Google Scholar 

  • Johannes, E., Brosnan, J. M., and Sanders, D. (1991).BioEssays 13, 331–336.

    Google Scholar 

  • Kaestner, K. H., and Sze, H. (1987).Plant Physiol. 83, 483–489.

    Google Scholar 

  • Kaestner, K. H., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263, 1282–1287.

    Google Scholar 

  • Klink, R., and Luttge, U. (1991).Biot. Acta 104, 122–131.

    Google Scholar 

  • Lai, S., Randall, S. K., and Sze, H. (1988).J. Biol. Chem. 263, 16731–16737.

    Google Scholar 

  • Lai, S., Watson, J. C., Hansen, J. N., and Sze, H. (1991).J. Biol. Chem. 266, 16078–16084.

    Google Scholar 

  • Luttge, U. (1987).New Phytol. 106, 593–629.

    Google Scholar 

  • Luttge, U., and Higinbotham, N. (1979).Transport in Plants, Springer-Verlag, New York.

    Google Scholar 

  • MacRobbie, E. A. C. (1979). InPlant organelles (Reid, E., ed.), Wiley, New York, pp. 61–67.

    Google Scholar 

  • Mandala, S., and Taiz, L. (1985).Plant Physiol. 78, 327–333.

    Google Scholar 

  • Mandala, S., and Taiz, L. (1986).J. Biol. Chem. 261, 12850–12855.

    Google Scholar 

  • Manolson, M. F., Rea, P. A., and Poole, R. J. (1985).J. Biol. Chem. 260, 12273–12279.

    Google Scholar 

  • Manolson, M. F., Ouellette, B. F. F., Filion, M., and Poole, R. J. (1988).J. Biol. Chem. 263, 17987–17994.

    Google Scholar 

  • Martinoia, E., Thume, M., Vogt, E., Rentsch, D., and Dietz, K.-J. (1991).Plant Physiol. 97, 664–650.

    Google Scholar 

  • Matsuura-Endo, C., Maeshima, M., and Yoshida, S. (1990).Eur. J. Biochem. 187, 745–751.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989).J. Biol. Chem. 264, 3577–3582.

    Google Scholar 

  • Morre, D. J., Liedtke, C., Brightman, A. O., and Scherer, G. F. E. (1991).Planta 184, 343–349.

    Google Scholar 

  • Narasimhan, M. L., Binzel, M. L., Perez-Prat, E., Chen, Z., Nelson, D. E., Singh, N. K., Bressan, R. A., and Hasegawa, P. M. (1991).Plant Physiol. 97, 562–568.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1989).FEBS Lett. 247, 147–153.

    Google Scholar 

  • Nelson, H., and Nelson, N. (1990).Proc. Natl. Acad. Sci. USA 87, 3503–3507.

    Google Scholar 

  • Noumi, T., Beltran, C., Nelson, H., and Nelson, N. (1991).Proc. Natl. Acad. Sci. USA 88, 1938–1942.

    Google Scholar 

  • Parry, R. V., Turner, J. C., and Rea, P. A. (1989).J. Biol. Chem. 264, 20025–20032.

    Google Scholar 

  • Pope, A. J., and Leigh, R. A. (1990).Planta 181, 406–413.

    Google Scholar 

  • Puopolo, K., and Forgac, M. (1990).J. Biol. Chem. 265, 14836–14841.

    Google Scholar 

  • Randall, S. K., and Sze, H. (1986).J. Biol. Chem. 261, 1364–1371.

    Google Scholar 

  • Randall, S. K., and Sze, H. (1987).J. Biol. Chem. 262, 7135–7141.

    Google Scholar 

  • Randall, S., and Sze, H. (1989).Plant Physiol. 89, 1292–1298.

    Google Scholar 

  • Raschke, K., Hedrich, R., Beckmann, U., and Schroeder, J. I. (1988).Bot. Acta 101, 283–294.

    Google Scholar 

  • Rea, P. A., and Sanders, D. (1987).Physiol. Plant. 71, 131–141.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., Manolson, M. F., and Sanders, D. (1987a).Biochim. Biophys. Acta 904, 1–12.

    Google Scholar 

  • Rea, P. A., Griffith, C. J., and Sanders, D. (1987b).J. Biol. Chem. 262, 14745–14752.

    Google Scholar 

  • Reuveni, M., Bennett, A. B., Bressan, R. A., and Hasegawa, P. M. (1990).Plant Physiol. 94, 524–530.

    Google Scholar 

  • Ryan, C. A. (1990).Annu. Rev. Phytopathol. 28, 425–449.

    Google Scholar 

  • Sanchez-Aguayo, I., Gonzalez-Utor, A. L., and Medina, A. (1991).Plant Physiol. 96, 153–158.

    Google Scholar 

  • Schroeder, J. I., and Hedrich, R. (1989).Trend Biochem. Sci. 14, 187–192.

    Google Scholar 

  • Schumaker, K. S., and Sze, H. (1986).J. Biol. Chem. 261, 12172–12178.

    Google Scholar 

  • Schumaker, K. S., and Sze, H. (1987).J. Biol. Chem. 262, 3944–3946.

    Google Scholar 

  • Struve, I., Rausch, T., Bernasconi, P., and Taiz, L. (1990).J. Biol. Chem. 265, 7927–7932.

    Google Scholar 

  • Sze, H. (1985).Annu. Rev. Plant. Physiol. 36, 175–208.

    Google Scholar 

  • Taiz, S. L., and Taiz, L. (1991).Bot. Acta 104, 117–121.

    Google Scholar 

  • Tiedge, H., and Schafer, G. (1989).Biochim Biophys Acta 977, 1–9.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M., and Gay, N. J. (1982).EMBO J. 8, 945–951.

    Google Scholar 

  • Wang, Y., and Sze, H. (1985).J. Biol. Chem. 260, 10434–10443.

    Google Scholar 

  • Wang, Z. Q., and Gluck, S. (1990).J. Biol. Chem. 265, 21957–21965.

    Google Scholar 

  • Ward, J. M., and Sze, H. (1992a).Plant Physiol. 99, 70–179.

    Google Scholar 

  • Ward, J. M., and Sze, H. (1992b).Plant Physiol., in press.

  • Ward, J. M., Reinders, A., Hsu, H.-T., and Sze, H. (1992).Plant Physiol. 99, 161–169.

    Google Scholar 

  • White, P. J., and Smith, J. A. C. (1989).Planta 179, 265–274.

    Google Scholar 

  • Yoshida, S. (1991).Plant Physiol. 95, 456–460.

    Google Scholar 

  • Zhen, R.-G., Koyro, H.-W., Leigh, R. A., Tomos, A. D., and Miller, A. J. (1991).Planta 185, 356–361.

    Google Scholar 

  • Zimniak, K., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988).J. Biol. Chem. 263, 9102–9112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sze, H., Ward, J.M. & Lai, S. Vacuolar H+-translocating ATPases from plants: Structure, function, and isoforms. J Bioenerg Biomembr 24, 371–381 (1992). https://doi.org/10.1007/BF00762530

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762530

Key words

Navigation