Skip to main content
Log in

A theory for the superconducting phases of UPt3

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

I discuss a phenomenological theory for the multiple superconducting phases of UPt3 that is based on an order parameter belonging to an orbital 2D representation of the hexagonal point group which is coupled to a weak symmetry breaking field. I show that (1) the existing H-T and P-T phase diagrams (including an apparent tetracritical point in the H-T plane for all field orientations), (2) the anisotropy of the upper critical field over the full temperature range, (3) the correlation between superconductivity and basal plane antiferromagnetism and (4) low-temperature power laws in the transport and thermodynamic properties can be explained qualitatively, and in many respects quantitatively, by an odd-parity, E2u order parameter with a pair spin projection of zero along the ĉ-axis. AFM ordering in the basal plane, which couples to the superconducting order parameter, acts as the symmetry breaking field that is responsible for both the apparent tetracritical point and the zero-field double transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sulpiceet al., J. Low Temp. Phys.62, 39 (1986).

    Google Scholar 

  2. R. Fisheret al., Phys. Rev. Lett.62, 1411 (1989).

    Google Scholar 

  3. B. Shivaram, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett.57, 1259 (1986).

    Google Scholar 

  4. L. Taillefer, F. Piquemal, and J. Flouquet, PhysicaC 153–155, 451 (1988).

    Google Scholar 

  5. T. Vorenkamp, Ph.D. thesis, University of Amsterdam, 1992.

  6. D. Bishopet al., Phys. Rev. Lett.53, 1009 (1984).

    Google Scholar 

  7. V. Mülleret al., Sol. State Comm.57, 319 (1986).

    Google Scholar 

  8. B. Shivaram, Y. Jeong, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett.56, 1078 (1986).

    Google Scholar 

  9. F. Grosset al., PhysicaC, 153 (1988).

    Google Scholar 

  10. B. Shivaram, J. Gannon Jr., and D. Hinks, PhysicaB 163, 141 (1990).

    Google Scholar 

  11. P. J. C. Signoreet al., Phys. Rev.B45, 10151 (1992).

    Google Scholar 

  12. K. Hasselbach, L. Taillefer, and J. Flouquet, Phys. Rev. Lett.63, 93 (1989).

    Google Scholar 

  13. V. Mülleret al., Phys. Rev. Lett.58, 1224 (1987).

    Google Scholar 

  14. Y. Qianet al., Solid State Commun.63, 599 (1987).

    Google Scholar 

  15. A. Schenstromet al., Phys. Rev. Lett.62, 332 (1989).

    Google Scholar 

  16. R. Kleiman, P. Gammel, E. Bucher, and D. Bishop, Phys. Rev. Lett.62, 328 (1989).

    Google Scholar 

  17. G. Brulset al., Phys. Rev. Lett.65, 2294 (1990).

    Google Scholar 

  18. S. Adenwallaet al., Phys. Rev. Lett.65, 2298 (1990).

    Google Scholar 

  19. G. Bullock, B. Shivaram, and D. Hinks, Europhys. Lett.21, 357 (1993).

    Google Scholar 

  20. N. H. van Dijket al., submitted to Phys. Rev. B (1993).

  21. P. Thalmeieret al., PhysicaC175, 61 (1991).

    Google Scholar 

  22. G. Aeppliet al., Phys. Rev. Lett.60, 615 (1988).

    Google Scholar 

  23. T. Trappmann, H. v. Löhneysen, and L. Taillefer, Phys. Rev.B43, 13714 (1991).

    Google Scholar 

  24. S. Hayden, L. Taillefer, C. Vettier, and J. Flouquet, Phys. Rev.B46, 8675 (1992).

    Google Scholar 

  25. P. Anderson, Phys. Rev.B30, 4000 (1984).

    Google Scholar 

  26. G. Volovik and L. Gor'kov, Sov. Phys. JETP61, 843 (1985).

    Google Scholar 

  27. P. A. Leeet al., Comments on Cond. Mat. Phys.12, 99 (1986).

    Google Scholar 

  28. G. Volovik and L. Gor'kov, Sov. Phys. JETP Lett.39, 674 (1984).

    Google Scholar 

  29. S. Yip and A. Garg, Phys. Rev.B48, 3304 (1993).

    Google Scholar 

  30. I. Luk'yanchuk, J. de Phys.I1, 1155 (1991).

    Google Scholar 

  31. D. Chen and A. Garg, Phys. Rev. Lett.70, 1689 (1993).

    Google Scholar 

  32. D. Hess, T. Tokuyasu, and J. Sauls, J. Phys. Condens. Matter1, 8135 (1989).

    Google Scholar 

  33. K. Machida and M. Ozaki, J. Phys. Soc. Jpn.58, 2244 (1989).

    Google Scholar 

  34. L. Gor'kov, Sov. Sci. Rev. A.9, 1 (1987).

    Google Scholar 

  35. R. Joynt, Sup. Sci. Tech.1, 210 (1988).

    Google Scholar 

  36. T. Tokuyasu, D. Hess, and J. Sauls, Phys. Rev.B41, 8891 (1990).

    Google Scholar 

  37. R. Joynt, V. Mineev, G. Volovik, and Zhitomirskii, Phys. Rev.B42, 2014 (1990).

    Google Scholar 

  38. M. Sigrist and K. Ueda, Rev. Mod. Phys.63, 239 (1991).

    Google Scholar 

  39. M. Sigrist, T. M. Rice, and K. Ueda, Phys. Rev. Lett.63, 1727 (1989).

    Google Scholar 

  40. T. Tokuyasu and J. Sauls, Physica B165–166, 347 (1990).

    Google Scholar 

  41. M. Palumbo, P. Muzikar, and J. Sauls, Phys. Rev.B42, 2681 (1990).

    Google Scholar 

  42. Y. Barash and A. S. Mel'nikov, Sov. Phys. JETP73, 170 (1991).

    Google Scholar 

  43. R. Joynt, Euro. Phys. Lett.16, 289 (1991).

    Google Scholar 

  44. A. S. Mel'nikov, Sov. Phys. JETP74, 1059 (1992).

    Google Scholar 

  45. M. Palumbo and P. Muzikar, Phys. Rev.B45, 12620 (1992).

    Google Scholar 

  46. M. Palumbo and P. Muzikar, Euro. Phys. Lett. 20, 267 (1992).

    Google Scholar 

  47. C. Choi and P. Muzikar, Phys. Rev.B40, 5144 (1989).

    Google Scholar 

  48. P. Frings, B. Renker, and C. Vettier, Physica B151, 499 (1988).

    Google Scholar 

  49. B. Shivaram, J. Gannon Jr., and D. Hinks, Phys. Rev. Lett.63, 1723 (1989).

    Google Scholar 

  50. E. Vincentet al., J. Phys, Cond. Matt.3, 3517 (1991).

    Google Scholar 

  51. E. A. Knetch, J. A. Mydosh, T. Vorenkamp, and A. A. Menovsky, J.M.M.M.108, 75 (1992).

    Google Scholar 

  52. L. Tailleferet al., J. Magn. Magn. Mat.90–91, 623 (1990).

    Google Scholar 

  53. K. Machida and M. Ozaki, Phys. Rev. Lett.66, 3293 (1991).

    Google Scholar 

  54. M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP74, 1046 (1992).

    Google Scholar 

  55. M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett.58, 131 (1993).

    Google Scholar 

  56. J. Sauls, to be published in Adv. Phys. (1994).

  57. C. Choi and J. Sauls, Phys. Rev. Lett.66, 484 (1991).

    Google Scholar 

  58. C. Choi and J. Sauls, Phys. Rev.B48, 13684 (1993).

    Google Scholar 

  59. P. H. Frings, J. Franse, F. R.de Boer, and A. Menovsky, J. Mag. Mag. Mat.31–34, 240 (1983).

    Google Scholar 

  60. This statement can be made quantitative with a specific bandstructure.,c.f. Ref. (59) and V. Vinokour, J. Sauls, and M. Norman, unpublished (1994).

  61. M. Norman, PhysicaC194, 205 (1992).

    Google Scholar 

  62. S. Schmitt-Rink, K. Miyake, and C. Varma, Phys. Rev. Lett.57, 2575 (1986).

    Google Scholar 

  63. C. Broholmet al., Phys. Rev. Lett.65, 2062 (1990).

    Google Scholar 

  64. C. J. Pethick and D. Pines, Phys. Rev. Lett.57, 118 (1986).

    Google Scholar 

  65. P. J. Hirschfeld, D. Vollhardt, and P. Wölfle, Sol. State Comm.59, 111 (1986).

    Google Scholar 

  66. E. Blount, Phys. Rev.B32, 2935 (1985).

    Google Scholar 

  67. M. Norman, Phys. Rev.B43, 6121 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauls, J.A. A theory for the superconducting phases of UPt3 . J Low Temp Phys 95, 153–168 (1994). https://doi.org/10.1007/BF00754932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754932

Keywords

Navigation