Skip to main content
Log in

Flux line lattice states and pinning in niobium wire networks in high magnetic fields

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The properties of the flux line lattice in the thin strands of superconducting niobium wire networks with thickness and width comparable to the penetration depth are investigated in the limit of very few flux lines. An angle dependent upper critical field is observed that is consistent with the existence of surface superconductivity. Our results indicate the existence of a flux line lattice in the complete field range Bc1 ⩽ B ⩽ Bc∥ ≃ 1.4 Bc2. The flux line lattice undergoes a dimensional crossover when the transversal correlation length Rc is of the order of the strand width. The field dependence of the Labusch parameter due to surface pinning is determined and compared to a model for surface pinning by Bean-Livingston barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tomé-Rosa, G. Jakob, A Walkenhorst, M. Maul, M. Schmitt. M. Paulson, and H. Adrian,Z. Phys. B 83, 221 (1991).

    Google Scholar 

  2. B. Roas, L. Schultz, and G. Saemann-Ischenko,Phys. Rev. Lett. 64, 479 (1990).

    Google Scholar 

  3. M. Tachiki, and S. Takahashi,Solid State Commun. 70, 291 (1989);Solid State Commun. 72, 1083 (1989).

    Google Scholar 

  4. G. Stejic, A. Gurevich, E. Kadyrov, D. Christen, R. Joynt, and D. C. Larbalestier,Phys. Rev. B 49, 1274 (1994).

    Google Scholar 

  5. D. Kumar, M. G. Blamire, R. Doyle, A. M. Campbell, and J. E. Evetts,J. Appl. Phys. 76, 2361 (1994).

    Google Scholar 

  6. E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowski, D. Majer, B. Khaykovich, V. M. Vinokur, and H. Shtrikman,Phys. Rev. Lett. 73, 1428 (1994).

    Google Scholar 

  7. B. Pannetier, “Superconducting Wire Networks,” in “Quantum Coherence in Mesoscopic Systems,” edited by B. Kramer, Plenum Press, New York 1991, p. 457.

    Google Scholar 

  8. P. Esquinazi,J. Low Temp. Phys. 85, 139 (1991).

    Google Scholar 

  9. M. Ziese, P. Esquinazi, and H. F. Braun,Supercond. Sci. Technol. 7, 869 (1994).

    Google Scholar 

  10. R. Labusch,Crystal Lattice Defects 1, 1 (1969).

    Google Scholar 

  11. J. Kober, A. Gupta, P. Esquinazi, H. F. Braun, and E. H. Brandt,Phys. Rev. Lett. 66, 2507 (1991).

    Google Scholar 

  12. W. A. Little and R. D. Parks,Phys. Rev. Lett. 9, 9 (1962).

    Google Scholar 

  13. H. J. Fink and A. G. Presson,Phys. Rev. 151, 219 (1966).

    Google Scholar 

  14. O. Buisson, P. Gandit, R. Rammal, Y. Y. Wang, and B. Pannetier,Phys. Lett. A 150, 36 (1990).

    Google Scholar 

  15. E. Guyon, F. Meunier, and R. S. Thompson,Phys. Rev. 156, 452 (1967); I. O. Kulik,J. Exptl. Theoret. Phys. (U.S.S.R.) 52, 1632 (1967) (Sov. Phys. JETP 25, 1085 (1967)); H. J. Fink,Phys. Rev. 177, 732 (1969); H. A. Schultens,Z. Physik 232, 430 (1970); B. J. Yuan,Z. Phys. B 96, 165 (1994).

    Google Scholar 

  16. P. Scotto and W. Pesch,J. Low Temp. Phys. 84, 301 (1991); P. Scotto, Diploma thesis, University of Bayreuth, 1991.

    Google Scholar 

  17. D. Saint-James and P. G. de Gennes,Phys. Lett. 7, 306 (1963).

    Google Scholar 

  18. R. Wördenweber and P. H. Kes,Phys. Rev. B 34, 494 (1986);Cryogenics 29, 321 (1989).

    Google Scholar 

  19. E. H. Brandt and U. Essmann,Phys. Stat. Sol. B 144, 13 (1987).

    Google Scholar 

  20. E. H. Brandt, P. Esquinazi, and H. Neckel,J. Low Temp. Phys. 63, 187 (1986).

    Google Scholar 

  21. M. Ziese, Ph.D. Thesis, University of Bayreuth 1995, unpublished.

  22. F. M. Sauerzopf, E. Moser, H. W. Weber, and F. A. Schmidt,J. Low Temp. Phys. 66, 191 (1987).

    Google Scholar 

  23. K. Usadel,Phys. Rev. Lett. 25, 507 (1970).

    Google Scholar 

  24. Landolt-Börnstein, New Series, Group III: Solid State Physics, Vol.21, Subvol. bl: Nb, Nb-Ar ... Nb-Ge, Springer Verlag, Berlin Heidelberg 1993, p. 1–4.

  25. Y. Saito and T. Anayama,J. Appl. 44, 5111 (1973).

    Google Scholar 

  26. Y. Asada and H. Nosé,J. Phys. Soc. Japan 26, 347 (1969).

    Google Scholar 

  27. A. Bezryadin and B. Pannetier,J. Low Temp. Phys. 98, 251 (1995).

    Google Scholar 

  28. M. Tinkham,Phys. Rev. 129, 2413 (1962).

    Google Scholar 

  29. D. R. Tilley and R. Ward,J. Phys. C 3, 2119 (1970).

    Google Scholar 

  30. H. Drulis, Z. G. Xu, J. W. Brill, L. E. De Long, and J.-C. Hou,Phys. Rev. B 44, 4731 (1992).

    Google Scholar 

  31. R. W. Rollins and J. Silcox,Phys. Rev. B 155, 404 (1967).

    Google Scholar 

  32. I. O. Kulik,Zh. Eksp. Teor. Fiz. 55, 889 (1968) (Sov. Phys. JETP 28, 461 (1969)).

    Google Scholar 

  33. P. Monceau, D. Saint-James, and G. Waysand,Phys. Rev. B 12, 3673 (1975).

    Google Scholar 

  34. J. Berger and J. Rubinstein,Phys. Rev. Lett. 75, 320 (1995).

    Google Scholar 

  35. P. Mathieu, B. Plaçais, and Y. Simon,Phys. Rev. B 48, 7376 (1993).

    Google Scholar 

  36. A. I. Larkin and Yu. N. Ovchinnikov,J. Low Temp. Phys. 34, 409 (1979).

    Google Scholar 

  37. E. H. Brandt,J. Low Temp. Phys. 26, 709 (1977);ibid. 26, 735 (1977).

    Google Scholar 

  38. C. P. Bean, and J. D. Livingston,Phys. Rev. Lett. 12, 14 (1964); P. G. de Gennes,Solid State Commun. 3, 127 (1965).

    Google Scholar 

  39. Y. Mawatari and K. Yamafuji,Physica C 228, 336 (1994).

    Google Scholar 

  40. H. R. Hart, JR., and P. S. Swartz,Phys. Rev. 156, 403 (1967).

    Google Scholar 

  41. O. Daldini, P. Martinoli, J. L. Olsen, and G. Berner,Phys. Rev. Lett. 32, 218 (1974).

    Google Scholar 

  42. M. Krusius, J. S. Korhonen, Y. Kondo, and E. B. Sonin,Phys. Rev. B 47, 15113 (1993).

    Google Scholar 

  43. E. J. Tomlinson, P. Przyslupski, and J. E. Evetts,Cryogenics 33, 28 (1993).

    Google Scholar 

  44. R. A. Doyle, A. M. Campbell, and R. E. Somekh,Phys. Rev. Lett. 71, 4241 (1993). R. A. Doyle, D. Kumar, P. Pullan, R. Gross, A. M. Campbell, M. G. Blamire, R. E. Somekh, and J. E. Evetts, “Applied Superconductivity,” Proc. EUCAS'93, edited by H. C. Freyhardt, DGM Informationsgesellschaft 1993, p. 689.

    Google Scholar 

  45. J. R. Clem, “Low Temperature Physics,” LT-13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E, F. Hammel (Plenum, New York, 1974), Vol. 3, p. 102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziese, M., Esquinazi, P., Knappe, S. et al. Flux line lattice states and pinning in niobium wire networks in high magnetic fields. J Low Temp Phys 103, 71–106 (1996). https://doi.org/10.1007/BF00754658

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754658

Keywords

Navigation