Skip to main content
Log in

The static and dynamic properties of vicinal surfaces on helium 4 crystals

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have studied melting-freezing waves propagating at low temperature (40<T<500mK) on vicinal surfaces of hep helium 4 crystals, which are tilted by a small angle ø with respect to c facets. We have first obtained the experimental evidence of a crossover angle øc≈ 2.5 °, where the surface properties change from stepped and anisotropic to rough and Isotropic. This result confirms our previous prediction1 that such a crossover should occur at the small angle where the large step width is comparable to the average distance between steps. It also confirms the hypothesis that crystal surfaces are weakly coupled to the lattice in helium. In the ø→ 0 limit, we observed a clear stepped behaviour: the longitudinal component of the surface stiffness vanishes while the transverse component diverges. A quantitative analysis of these two components allowed us to measure the step energy and the interactions between steps. Good agreement is found with the prediction that step interactions result from the combination of elastic and entropic effects. We also found evidence that helium 3 impurities adsorb on the liquid-solid interface and lower the step energy when ordinary helium 4 (130 ppb of3He) is used instead of an ultrapure sample (0.4ppb). Furthermore, from the damping of the waves, we could study the dynamics of vicinal surfaces, i.e. their mobility as a function of temperature, angle and frequency. Here too, a crossover is observed from stepped to rough behavior. The dynamics is sensitive to the existence of steps up to higher angles than the stiffness. We show that a true stepped behavior is observed only if two conditions are fulfilled: the distance between steps must be much larger than the step width, and also larger than the mean wavelength of thermal phonons. By changing the frequency, we could finally confirm that the surface mobility increases when the phonon mean free path becomes smaller than the wavelength of the melting-freezing waves. We conclude with some suggestions for further theoretical and experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Balibar, C. Guthmann, and E. Rolley,J. Phys. I France 3, 1475 (1993).

    Google Scholar 

  2. J. D. Weeks and G. H. Gilmer,Adv. in Chem. Phys. 40, 157 (1979).

    Google Scholar 

  3. H. van Beijeren and I. Nolden, in “Structure and dynamics of surfaces II,” ed. by W. Schommers and P. van Blanckenhagen, Springer 1987.

  4. P. Nozières, in “Solids Far From Equilibrium,” Lectures at the Beg-Rohu summer school, C. Godrèche ed. (Cambridge University Press, 1991).

  5. P. Nozières and F. Gallet,J. Phys. (France)48, 353 (1987).

    Google Scholar 

  6. J. Lapujoulade, J. Perrau, and A. Kora,Surf. Sci. 129, 59 (1983); J. Villain, D. R. Grempel, and J. Lapujoulade,J. Phys. F 15, 804 (1985); J. Lapujoulade, in “Interaction of atoms and molecules with solid surfaces”, ed. by V. Bortolaniet al. p. 381 (Plenum, 1990).

    Google Scholar 

  7. C. Jayaprakash, W. F. Saam, and S. Teitel,Phys. Rev. Lett. 50, 2017 (1983); C. Rottman and M. Wortis,Phys. Rev. B 29, 328 (1984).

    Google Scholar 

  8. N. C. Bartelt, T. L. Einstein, and E. Williams,Surf. Sci. Lett. 240, 591 (1990); E. Williams and N. C. Bartelt,Science 251, 393 (1991).

    Google Scholar 

  9. M. Kardar and D. R. Nelson,Phys. Rev. Lett. 55, 1157 (1985).

    Google Scholar 

  10. M. Uwaha,J. Low Temp. Phys. 77, 165 (1989); M. Uwaha,J. Phys. (France)51, 2743 (1990).

    Google Scholar 

  11. H. van Beijeren, private communication.

  12. C. Rottman, M. Wortis, J. C. Heyraud, and J. J. Métois,Phys. Rev. Lett. 52, 1009 (1984); J. J. Saenz and N. Garcia,Surf. Sci. 155, 24 (1985).

    Google Scholar 

  13. J. J. Métois and J. C. Heyraud,Surf. Sci. 180, 647 (1987).

    Google Scholar 

  14. F. Gallet, Ph.D. thesis, unpublished, Paris (1986); Y. Carmi, S. G. Lipson, and E. Polturak,Phys. Rev. B 36, 1894 (1987). New results have very recently been obtained on helium 4 crystals by A. V. Babkin (private communication) with an improved interferometric technique.

  15. X. S. Wang, J. L. Goldberg, N. C. Bartelt, T. L. Einstein, and E. Williams,Phys. Rev. Lett. 65, 2430 (1990).

    Google Scholar 

  16. C. Alfonso, J. M. Bermond, J. C. Heyraud, and J. J. Metois,Surf. Sci. 262, 371 (1992).

    Google Scholar 

  17. S. Balibar, C. Guthmann, and E. Rolley,Surf. Sci. 283, 290 (1993).

    Google Scholar 

  18. J. Frohn, M. Giesen, M. Poengsen, J. F. Wolf, and H. Ibach,Phys. Rev. Lett. 67, 3543 (1991).

    Google Scholar 

  19. K. O. Keshishev, A. Ya. Parshin, and A. V. Babkin,Pis'ma Zh. Eksp. Teor. Fiz. 30, 63 (1979) [Sov. Phys. JETP Lett. 30, 56 (1979)].

    Google Scholar 

  20. O. A. Andreeva and K. O. Keshishev,Pis'ma Zh. Eksp. Teor. Fiz. 46, 160 (1987) [Sov. Phys. JETP Lett. 46, 200 (1987)]; O. A. Andreeva, K. O. Keshishev, and S. Yu. Osip'yan,Pis'ma Zh. Eksp. Teor. Fiz. 49, 661 (1989) [Sov. Phys. JETP Lett.49, 759 (1989)]; O. A. Andreeva, K. O. Keshishev, A. V. Kogan, and A. N. Marchenkov,Europhysics Letters 19, 683 (1992).

    Google Scholar 

  21. A. F. Andreev, inExcitations in 2D and 3D Quantum Fluids, ed. by A. F. G. Wyatt and H. J. Lauter (Plenum, New York 1991), p. 397; K. O. Keshishev and O. Andreeva, ibid. p. 387.

    Google Scholar 

  22. E. Rolley, E. Chevalier, C. Guthmann, and S. Balibar,Phys. Rev. Lett. 72, 872 (1994).

    Google Scholar 

  23. V. I. Marchenko and A. Ya. Parshin,Zh. Eksp. Teor. Fiz. 79, 257 (1980) [Sov. Phys. JETP 52, 129 (1980)].

    Google Scholar 

  24. C. Jayaprakash, C. Rottman, and W. F. Saam,Phys. Rev. B 30, 6549 (1984).

    Google Scholar 

  25. Y. Akutsu, N. Akutsu, and T. Yamamoto,Phys. Rev. Lett. 61, 424 (1988). Their prediction for the entropic interaction in terms of the step energy can also be obtained from the work of Bartelt, Williamset al. 9 who used the work of C. Jayaprakashet al. 25 However, the hopping matrix element in Ref. 25 should be doubled (W. F. Saam, private communication, sept. 93). Hence the amplitude of the entropic interaction is also too small by a factor 2 in Ref. 9.

    Google Scholar 

  26. E. Rolley, S. Balibar, C. Guthmann, and P. Nozières,Jyväskylä meeting (Finland, June 1994) to appear inPhysica B 210 (May 1995).

  27. P. Nozières and M. Uwaha,J. Physique 48, 389 (1987).

    Google Scholar 

  28. Type Ta2 infrared filters purchased from MTO, Massy, France.

  29. The3He concentration is4xl0−10 (US Bureau of Mines certificate #(806)376 2367 FTS 735-1367).

  30. P. E. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozières,J. Physique (France)46, 1987 (1985).

    Google Scholar 

  31. C. Guthmann, S. Balibar, E. Chevalier, E. Rolley, and J. C. Sutra-Fourcade,Rev. Sci. Inst. 65, 273 (1994).

    Google Scholar 

  32. P. R. Roach, J. B. Ketterson, and M. Kuchnir,Rev. Sci. Inst. 43, 898 (1972).

    Google Scholar 

  33. C. L. Wang and G. Agnolet,J. Low Temp. Phys. 89, 759 (1992);Phys. Rev. Lett. 69, 2102 (1992).

    Google Scholar 

  34. A. F. Andreev and A. Ya. Parshin,Zh. Eksp. Teor. Fiz. 75, 1511 (1978) [Sov. Phys. JETP 48, 763 (1978)].

    Google Scholar 

  35. F. Gallet, S. Balibar, and E. Rolley,J. Physique (France)48, 369 (1987).

    Google Scholar 

  36. F. Pederiva, A. Ferrante, S. Fantoni, and L. Reatto,Phys. Rev. Lett. 72, 2589 (1994).

    Google Scholar 

  37. A. V. Babkin, D. B. Kopeliovitch, and A. Ya. Parshin,Zh. Eksp. Teor. Fiz. 89, 2288, (1985) [Sov. Phys. JETP 62, 1322 (1985)].

    Google Scholar 

  38. J. Treiner,J. Low Temp. Phys. 92, 1 (1993).

    Google Scholar 

  39. E. Varoquaux, G. G. Ihas, O. Avenel, and R. Aarts,Phys. Rev. Lett. 70, 2114 (1993).

    Google Scholar 

  40. D. O. Edwards, M. S. Petersen, and H. Baddar, inExcitations in 2D and 3D Quantum Fluids, ed., by A. F. G. Wyatt and H. J. Lauter (Plenum, New York 1991), p. 361.

    Google Scholar 

  41. H. J. Maris and T. E. Huber,J. Low Temp. 48, 99 (1982).

    Google Scholar 

  42. P. Nozières, private communication.

  43. B. Castaing, S. Balibar, and C. Laroche,J. Physique (France)41, 897 (1980); J. Bodensohn, K. Nicolai, and P. Leiderer,Z. Phys. B 64, 55 (1986).

    Google Scholar 

  44. R. M. Bowley and D. O. Edwards,J. Physique (France)44, 723 (1983).

    Google Scholar 

  45. A. A. Golub and S. V. Svatko,Fiz. Nisk. Temp. 6, 957 (1980) [Sov. J. Low Temp. Phys. 6, 465 (1980)].

    Google Scholar 

  46. D. S. Greywall,Phys. Rev. B 16, 5127 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Associé au CNRS et aux Universités Paris 6 et 7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolley, E., Guthmann, C., Chevalier, E. et al. The static and dynamic properties of vicinal surfaces on helium 4 crystals. J Low Temp Phys 99, 851–886 (1995). https://doi.org/10.1007/BF00753563

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00753563

Keywords

Navigation