Skip to main content
Log in

Dynamics of a \(^4\)He Quantum Crystal in the Superfluid Liquid

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The motion of helium crystals has been experimentally studied when the crystals fall in the superfluid liquid owing to gravity at temperatures above the roughening transitions where the whole crystal surface is in the atomically rough state. The rate of crystal fall at \(T = 1.25\) K is higher than at \(T = 1.54\) K. This is proof of the essential role of the normal component of superfluid helium in the deceleration of crystal motion. The pressure measurements in the container have shown the effect of surface kinetics on the motions of the crystal and its size. The fall of crystals with the low surface mobility at \(T=1.54 \) K does not change the pressure significantly. The high surface mobility at \(T=1.25\) K results in decreasing the pressure in the container in the course of the fall of a crystal. The pressure drop exceeds the difference in the hydrostatic pressure between the initial and final positions of the crystal. After the stop, the pressure in the container relaxes to the difference mentioned above. This fact demonstrates an additional growth of the crystal in the flow of a superfluid liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.F. Andreev, A.Y. Parshin, Sov. Phys. JETP 48, 763 (1978)

    ADS  Google Scholar 

  2. P. Nozieres, M. Uwaha, J. Phys. 47, 263 (1986)

    Article  Google Scholar 

  3. M.Y. Kagan, Sov. Phys. JETP 63, 288 (1986)

    Google Scholar 

  4. L.A. Maksimov, V.L. Tsymbalenko, JETP 95, 455 (2002)

    Article  ADS  Google Scholar 

  5. V.L. Tsymbalenko, Phys. Uspekhi 58, 1059 (2015)

    Article  ADS  Google Scholar 

  6. S.N. Burmistrov, L.B. Dubovskii, V.L. Tsymbalenko, Phys. Rev. E 79, 051606 (2009)

    Article  ADS  Google Scholar 

  7. A.V. Babkin, D.B. Kopeliovich, A.Y. Parshin, Sov. Phys. JETP 62, 1322 (1985)

    Google Scholar 

  8. V.L. Tsymbalenko, J. Low Temp. Phys. 171, 21 (2013)

    Article  ADS  Google Scholar 

  9. R. Nomura, Y. Okuda, A. Tachiki, T. Yoshida, New J. Phys. 16, 113022 (2014)

    Article  Google Scholar 

  10. V.L. Tsymbalenko, J. Low Temp. Phys. 195, 153 (2019)

    Article  ADS  Google Scholar 

  11. V.L. Tsymbalenko, JETP 99, 1214 (2004)

    Article  ADS  Google Scholar 

  12. V.L. Tsymbalenko, Ukr. Low Temp. Phys. 21, 120 (1995)

    ADS  Google Scholar 

  13. V.L. Tsymbalenko, Cryogenics 36, 65 (1996)

    Article  ADS  Google Scholar 

  14. V.L. Tsymbalenko, Instr. Exp. Tech. 40, 585 (1997)

    Google Scholar 

  15. L.A. Maksimov, V.L. Tsymbalenko, JETP 87, 714 (1998)

    Article  ADS  Google Scholar 

  16. J. Bodensohn, P. Leiderer, K. Nicolai, Z. Phys. B 64, 55 (1986)

    Article  ADS  Google Scholar 

  17. H. Lamb, Hydrodynamics (University Press, Cambridge, 1916)

    MATH  Google Scholar 

  18. L.D. Landau, E.M. Lifshits, Fluid Mechanics (Pergamon Press, Oxford, 1987)

    MATH  Google Scholar 

  19. J.D. Maynard, Phys. Rev. B 14, 3868 (1976)

    Article  ADS  Google Scholar 

  20. K.M. Eisele, A.C. Hollis Hallett, Can. J. Phys. 36, 25 (1958)

    Article  ADS  Google Scholar 

  21. C.B. Benson, A.C. Hollis Hallett, Can. J. Phys. 34, 668 (1956)

    Article  ADS  Google Scholar 

  22. R.J. Donnelly, A.C. Hollis, Ann. Phys. 3, 320 (1958)

    Article  ADS  Google Scholar 

  23. R.A. Laing, H.E. Rorschach Jr., Phys. Fluids 4, 564 (1961)

    Article  ADS  Google Scholar 

  24. J.P. Adelin, Jr.03. https://thesis.library.caltech.edu/2383/ (1967)

  25. R.P. Feynman, Progr. In Low Temp. Phys, vol. 1. Amsterdam (1955)

  26. J.J. Niemela, W.F. Vinen, J. Low Temp. Phys. 128, 167 (2002)

    Article  ADS  Google Scholar 

  27. W. Schoepe, JETP Lett. 102, 117 (2015)

    Article  Google Scholar 

  28. A.F. Andreev, V.G. Knizhnik, Sov. Phys. JETP 83, 416 (1982)

    Google Scholar 

  29. S. Balibar, F. Gallet, P. Nozieres, E. Rolley, P.E. Wolf, J. Phys. 46, 1987 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to V. V. Dmitriev for the possibility of performing these experiments at Kapitza Institute for Physical Problems RAS. The author is also grateful to V. V. Zavyalov for supporting this work, S. N. Burmistrov for helpful comments and V. S. Kruglov for interest to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Tsymbalenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsymbalenko, V.L. Dynamics of a \(^4\)He Quantum Crystal in the Superfluid Liquid. J Low Temp Phys 201, 526–537 (2020). https://doi.org/10.1007/s10909-020-02523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02523-1

Keywords

Navigation