Skip to main content
Log in

Atomic hydrogen-deuterium mixtures at 1 kelvin: Recombination rates, spin-exchange cross sections, and solvation energies

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A new technique has been applied to the study of atomic hydrogen and deuterium mixtures confined by liquid helium coated walls. The method uses standard low-field hyperfine magnetic resonance of the H atoms at 1420 MHz, but takes advantage of the dramatically different spin-exchange broadening for H-H and H-D collisions to simultaneously monitor the H and D densities. This provides a powerful means for studying the interaction of D with itself and with liquid helium, something otherwise difficult to achieve, and it also makes possible the study of spin-exchange and recombination interactions between H and D. A wide range of experimental results are presented, including the rate constants for H-D and D-D recombination, the spin-exchange broadening cross sections for H-D and D-D collisions, the H-D spin-exchange frequency shift cross section and an improved value for the H-4He buffer gas shift. Finally, a detailed study of the solvation of D into liquid4He has yielded an improved value for the salvation energy, a useful lower bound for the effective mass for D in liquid4He, and evidence for the reaction D + HD → D2 + H on the surface under the liquid4He film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. F. Silvera and J. T. M. Walraven, Stabilization of atomic hydrogen at low temperature,Phys. Rev. Lett. 44 (3), 164 (1980).

    Google Scholar 

  2. J. G. Brisson, PhD thesis, Harvard University (1990).

  3. T. J. Greytak and D. Kleppner,New Trends in Atomic Physics, North-Holland, Amsterdam (1984).

    Google Scholar 

  4. I. F. Silvera and J. T. M. Walraven, Spin polarized atomic hydrogen, in D. Brewer, ed.,Progress in Low Temperature Physics X, p. 139, North-Holland, Amsterdam (1986).

    Google Scholar 

  5. W. N. Hardy, M. D. Hürlimann, and R. W. Cline, Application of atomic hydrogen at low temperatures: The recirculating cryogenic hydrogen maser,Jap. J. of Appl. Phys. 26, 2065 (1987).

    Google Scholar 

  6. M. D. Hürlimann,Cryogenic Hydrogen Maser, PhD thesis, University of British Columbia (1989).

  7. M. Saarela and E. Krotscheck, Hydrogen isotope and3He impurities in liquid4He,J. Low Temp. Phys. 90 (5/6), 415 (1993).

    Google Scholar 

  8. K. E. Kürten and M. L. Ristig, Atomic and molecular hydrogen isotopes in liquid helium,Phys. Rev. B 31 (3), 1346 (1985).

    Google Scholar 

  9. W. N. Hardy, M. Morrow, R. Jochemsen, and A. J. Berlinsky, Magnetic resonance of atomic hydrogen at low temperatures,Physica 109 &110B, 1964 (1982).

    Google Scholar 

  10. W. N. Hardy, M. Morrow, R. Jochemsen, B. W. Statt, P. R. Kubik, R. M. Marsolais, A. J. Berlinsky, and A. Landesman, Magnetic-resonance studies of gaseous atomic hydrogen confined at 1 K and zero magnetic field,Phys. Rev. Lett. 45 (6), 453 (1980).

    Google Scholar 

  11. M. Morrow, R. Jochemsen, A. J. Berlinsky, and W. N. Hardy, Zero-field hyperfine resonance of atomic hydrogen for 0.18 ⩽T ⩽ 1 K: The binding energy of H on liquid4He,Phys. Rev. Lett. 46 (3), 195 (1981). Erratum:Phys. Rev. Lett. 47, 455 (1981).

    Google Scholar 

  12. M. R. Morrow,Magnetic Resonance on Atomic Hydrogen Confined by Liquid Helium Walls, PhD thesis, University of British Columbia (1983).

  13. J. M. Greben, A. W. Thomas, and A. J. Berlinsky, Quantum theory of hydrogen recombination,Can. J. Phys. 59, 945 (1981).

    Google Scholar 

  14. Issac. F. Silvera and J. T. M. Walraven, Spin-polarized atomic deuterium: Stabilization, limitations on density, and adsorption energy on helium,Phys. Rev. Lett. 45 (15), 1268 (1980).

    Google Scholar 

  15. A. P. M. Matthey, J. T. M. Walraven, and Issac. F. Silvera, Measurements of pressure of gaseous H↓: Adsorption energies and surface recombination rates on helium,Phys. Rev. Lett. 46 (10), 668 (1981).

    Google Scholar 

  16. M. Papoular, On the dynamical stability of D↓,J. Low Temp. Phys. 50 (3/4), 253 (1983).

    Google Scholar 

  17. W. C. Stwalley, Simple long-range model and scaling relations for the binding of isotopic hydrogen atoms to isotopic helium surfaces,Chem. Phys. Lett. 88 (4), 404 (1982).

    Google Scholar 

  18. M. W. Reynolds, M. E. Hayden, and W. N. Hardy, Hyperfine resonance of atomic deuterium at 1 K,J. Low Temp. Phys. 84 (1/2), 87 (1991).

    Google Scholar 

  19. C. Ebner and D. O. Edwards, The low temperature thermodynamic properties of superfluid solutions of3He in4He,Phys. Rep. 2 (2), 78 (1971).

    Google Scholar 

  20. E. Tjukanov, P. C. Souers, and W. N. Hardy, Zero field magnetic resonance studies of atomic tritium, in S. Stringari, ed.,Spin Polarized Quantum Systems, World Scientific, Singapore (1989).

    Google Scholar 

  21. I. Shinkoda, M. W. Reynolds, R. W. Cline, and W. N. Hardy, Observation of doubly spinpolarized deuterium by electron-spin resonance,Phys. Rev. Lett. 57 (10), 1243 (1986).

    Google Scholar 

  22. W. C. Stwalley, Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: New field-dependent scattering resonances and predissociations,Phys. Rev. Lett. 37, 1628 (1976).

    Google Scholar 

  23. M. W. Reynolds, M. E. Hayden, and W. N. Hardy, Resonance recombination of spin-polarized deuterium, in S. Stringari, ed.,Spin Polarized Quantum Systems, World Scientific, Singapore (1989).

    Google Scholar 

  24. M. W. Reynolds,Resonant Recombination of Atomic Hydrogen and Deuterium at Low Temperatures, PhD thesis, University of British Columbia (1989).

  25. P. T. Ptukha, Thermal conductivity and diffusion in weak He3-He4 solutions in the temperature range from the λ point to 0.6 K,Sov. Phys. JETP 13 (6), 1112 (1961).

    Google Scholar 

  26. M. E. Hayden, M. W. Reynolds, and W. N. Hardy, Atomic hydrogen and deuterium mixtures at 1 K,J. Low Temp. Phys. 169, 541 (1991).

    Google Scholar 

  27. S. B. Crampton,Hyperfine and Spin Exchange Experiments with the Atomic Hydrogen Maser, PhD thesis, Harvard University (1964).

  28. J. M. V. A. Koelman, S. B. Crampton, H. T. C. Stoof, O. J. Luiten, and B. J. Verhaar, Spin-exchange frequency shifts in cryogenic and room temperature hydrogen masers,Phys. Rev. A 38, 3535 (1988).

    Google Scholar 

  29. M. E. Hayden,Studies of Atomic Hydrogen Spin-Exchange Collisions at 1 K and Below, PhD thesis, University of British Columbia (1991).

  30. W. N. Hardy and L. A. Whitehead, Split-ring resonator for use in magnetic resonance from 200–2000 MHz,Rev. Sci. Instrum. 52 (2), 213 (1981).

    Google Scholar 

  31. M. E. Hayden and W. N. Hardy, A technique for measuring magnetic filling factors with applications to cryogenic magnetic resonance experiments (to be published).

  32. R. Jochemsen, A. J. Berlinsky, and W. N. Hardy, The diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential,Can. J. Phys. 62 (8), 751 (1984).

    Google Scholar 

  33. Thomas R. Roberts and Stephen G. Sydoriak, Thermomolecular pressure ratios for He3 and He4,Phys. Rev. 102 (2), 304 (1956).

    Google Scholar 

  34. W. N. Hardy and M. Morrow, Prospects for low temperature H masers using liquid helium coated walls,Journal de Physique 42 (12), C8–171 (1981).

    Google Scholar 

  35. John F. Cochrane and D. E. Mathoper, Superconducting transition in aluminum,Phys. Rev. 111 (1), 132 (1958).

    Google Scholar 

  36. Howard C. Berg, Spin exchange and surface relaxation in the atomic hydrogen maser,Phys. Rev. 137 (6A), A1621 (1965).

    Google Scholar 

  37. Tetsuo Miyazaki and Kwang-Pill Lee, Direct evidence for the tunneling reaction HD + D → H + D2 in the radiolysis of a D2-HD mixture at 4,2 K,J. Phys. Chem. 90, 400 (1986).

    Google Scholar 

  38. Kwang-Pill Lee, Tetsuo Miyazaki, Kenji Fueki, and Kenji Gotoh, Rate constant for tunneling reaction D2 + D → D + D2 in radiolysis of D2-HD mixtures at 4.2 and 1.9 K.J. Phys. Chem. 91, 180 (1987).

    Google Scholar 

  39. L. Pierre, H. Guignes, and C. Lhuillier, Adsorption states of light atoms (H, D, He) on quantum crystals (H2, D2, He, Ne),J. Chem. Phys. 82 (1), 496 (1985).

    Google Scholar 

  40. S. Franchetti, On the problem of the static helium film,Nuovo Cimento IV (6), 1504 (1956).

    Google Scholar 

  41. Ray Radebaugh, Thermodynamic properties of HE3-HE4 solutions with applications to the HE3-HE4 dilution refrigerator, inNBS Technical Note 362, US Department of Commerce (1967).

  42. G. Das, A. F. Wagner, and A. C. Whal, Calculated longe-range interactions and low energy scattering in He + H, Ne + H, Ar + H, Kr + H and Xe + H,J. Chem. Phys. 68, 4917 (1978).

    Google Scholar 

  43. R. Jochemsen and A. J. Berlinsky, The hyperfine frequency shift of atomic hydrogen in the presence of a helium buffer gas,Can. J. Phys. 60, 252 (1982).

    Google Scholar 

  44. Wilfred Meyer and Lothar Frommhold, Long range interactions in H-He:ab-initio potential, hyperfine pressure shift, and collision-induced absorption in the infrared,Theor. Chim. Acta 88, 201 (1994).

    Google Scholar 

  45. B. J. Verhaar, J. M. V. A. Koelman, H. T. C. Stoof, O. J. Luiten, and S. B. Crampton, Hyperfine contribution to spin-exchange frequency shifts in the hydrogen maser,Phys. Rev. A 35 (9), 3825 (1987).

    Google Scholar 

  46. A. J. Berlinsky and B. Shizgal, Spin-exchange scattering cross sections for hydrogen atoms at low temperatures,Can. J. Phys. 58, 881 (1980).

    Google Scholar 

  47. Ronald L. Walsworth, Isaac F. Silvera, Edward M. Mattison, and Robert C. Vessot, Measurement of a hyperfine-induced spin-exchange frequency shift in atomic hydrogen,Phys. Rev. A 46 (5), 2495 (1992).

    Google Scholar 

  48. Michael E. Hayden, Martin D. Hurlimann, and Walter N. Hardy, Hydrogen spin-exchange collisions in a cryogenic maser,IEEE Trans. on Instr. and Measurement 42 (2), 314 (1993).

    Google Scholar 

  49. M. E. Hayden, M. D. Hürlimann, and W. N. Hardy, Atomic hydrogen spin-exchange frequency shift cross section at 0.5 Kelvin,Proc. 1994 IEEE International Frequency Control Symposium, 670 (1994).

  50. M. E. Hayden, M. D. Hürlimann, and W. N. Hardy, Measurement of atomic hydrogen spin-exchange parameters at 0.5 K using a cryogenic hydrogen maser (to be published).

  51. R. Mayer and G. Seidel, Electron-spin resonance of atomic hydrogen and deuterium at low temperatures,Phys. Rev. B 31 (7), 4199 (1985).

    Google Scholar 

  52. Isaac F. Silvera, Spin-polarized hydrogen and deuterium: Quantum gases,Physica 109 &110B, 1499 (1982).

    Google Scholar 

  53. R. W. Cline, T. J. Greytak, and D. Kleppner, Nuclear polarization of spin-poiarized hydrogen,Phys. Rev. Lett. 47, 1195 (1981).

    Google Scholar 

  54. R. Sprik, J. T. M. Walraven, G. H. van Yperen, and Isaac F. Silvera, State dependent recombination and suppressed nuclear relaxation in atomic hydrogen,Phys. Rev. Lett. 49, 153 (1982).

    Google Scholar 

  55. B. Yurke, J. S. Denker, B. R. Johnson, N. Bigelow, L. P. Levy, D. M. Lee, and J. H. Freed, NMR-induced recombination of spin polarized hydrogen,Phys. Rev. Lett. 50, 1137 (1983).

    Google Scholar 

  56. P. Petit, M. Desaintfuscien, and C. Audoin, Temperature dependence of the hydrogen maser wall shift in the temperature range 295–395 K,Metrologia 16 (6), 7 (1980).

    Google Scholar 

  57. A. Abragam,Principles of Nuclear Magnetism, Clarendon Press, Oxford (1978).

    Google Scholar 

  58. Richard P. Feynman, Frank L. Vernon, Jr., and Robert W. Hellwarth, Geometrical representation of the Schrödinger equation for solving maser problems,J. Appl. Phys. 28 (1), 49 (1957).

    Google Scholar 

  59. Richard G. Brewer, Coherent optical spectroscopy, in Roger Balian, Serge Haroche, and Sylvain Liberman, eds.,Frontiers in Laser Spectroscopy, North-Holland, Amsterdam (1977).

    Google Scholar 

  60. Richard Marsolais,Spin Relaxation and Recombination in Atomic Hydrogen Gas at Temperatures around 1 K, MSc thesis, University of British Columbia (1980).

  61. Charles P. Slichter,Principles of Magnetic Resonance, Harper and Row, New York, 1963.

    Google Scholar 

  62. I. I. Rabi, N. F. Ramsey, and J. Schwinger, Use of rotating coordinates in magnetic resonance problems,Rev. Mod. Phys. 26 (2), 167 (1956).

    Google Scholar 

  63. D. Kleppner, H. C. Berg, S. B. Crampton, N. F. Ramsey, R. F. C. Vessot, H. E. Peters, and J. Vanier, Hydrogen-maser principles and techniques,Phys. Rev. 138 (4A), A972 (1965).

    Google Scholar 

  64. C. Audoin, J. P. Schermann, and P. Grivet, Physics of the hydrogen maser, inAdvances in Atomic and Molecular Physics: Vol. 7, Academic Press (1971).

  65. S. Bloom, Effects of radiation damping on spin dynamics,J. Appl. Phys. 28, 800 (1957).

    Google Scholar 

  66. J. C. Slater, Microwave electronics,Rev. Mod. Phys. 18, 441 (1946).

    Google Scholar 

  67. D. J. Wineland and N. F. Ramsey, Atomic deuterium maser,Phys. Rev. A 5 (2), 821 (1972).

    Google Scholar 

  68. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, Academic Press, Toronto, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, M.E., Hardy, W.N. Atomic hydrogen-deuterium mixtures at 1 kelvin: Recombination rates, spin-exchange cross sections, and solvation energies. J Low Temp Phys 99, 787–849 (1995). https://doi.org/10.1007/BF00753562

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00753562

Keywords

Navigation