Skip to main content
Log in

Electronic structure of iron porphyrins and hemoproteins and parameters of their Mössbauer spectra

  • Reviews
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Conclusions

The biochemical properties of hemoproteins are determined to a considerable extent by the electronic structure of the Fe ions of the heme groups, their oxidation numbers, and their spin states. In both hemoproteins and the model iron porphyrins these characteristics have a significant influence on the electron-nuclear interactions which determine the features of the57Fe Mössbauer spectra. A methodology which makes it possible to understand and interpret and sometimes to predict the experimental results on the basis of quantum-chemically calculated one-electron energies and wave functions has been developed for Mössbauer spectroscopy in fairly great detail. The combined use of the two methods for investigating hemoproteins and model iron porphyrins, viz., Mössbauer spectroscopy and quantum chemistry, makes it possible to more profoundly and completely answer questions regarding the relationship between the electronic, coordination, spin, and stereochemical properties of these compounds. On the one hand, quantum-chemical calculations can serve as an investigative tool and a methodological basis for interpreting Mössbauer results, and on the other hand, the data from Mössbauer spectroscopy can serve as a criterion of the correctness of the description of the real electronic structure by quantum-chemical methods and a criterion for selecting reliable structural representations.

The results presented in this review demonstrate the importance and pithiness of the theoretical conceptions and methods which are used in modern quantum chemistry to analyze and interpret data from Mössbauer spectroscopy. Important roles for the qualitative analysis and quantitative comparison with experimental data are played by the following in the theory: the EFG tensor, its principal components and their orientations relative to the molecular system of coordination; the one-electron energy levels and the energies of the terms corresponding to electronic states with different symmetries; the characteristics of the ion-ligand interaction the spin-orbit coupling; the contributions of the one-electron orbitals to the electron density on the57Fe nucleus; the effects of the mutual influence of the valence and core electrons in the molecule. In general quantum-chemical calculations permit a more thorough analysis of the intramolecular interactions responsible for the changes observed in Mössbauer spectra and make it possible to obtain information on the electronic states and oxidation numbers of the Fe ions, on the symmetry of the electronic terms and the configurational features of the states, as well as to draw definite conclusions regarding the confornational states of the ligands and their coordination schemes in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. R. J. P. Williams, Fed. Proc. Fed. Am. Soc. Exp. Biol.,80, 5 (1961).

    Google Scholar 

  2. J. L. Hoard, Porphyrins and Metalloporphyrins, K. M. Smith (editor), Elsevier, Amsterdam (1975), Chap. 8.

    Google Scholar 

  3. M. F. Perutz, Annu. Rev. Biochem.,48, 327–386 (1979).

    Google Scholar 

  4. C. Fermi, M. F. Perutz, B. Shaanan, and R. Fourme, J. Mol. Biol.,175, 159–174 (1984).

    Google Scholar 

  5. B. Shaanan, J. Mol. Biol.,171, 31–59 (1983).

    Google Scholar 

  6. S. E. V. Phillips. J. Mol. Biol.,142, 531–554 (1980).

    Google Scholar 

  7. R. F. Dickerson, T. Takano, D. Eisenberg, et al., J. Biol. Chem.,246, No. 5, 1511–1533 (1971).

    Google Scholar 

  8. F. R. Salemme, J. Kraut, and N. D. Kamen, J. Biol. Chem.,248, No. 22, 7701–7716 (1973).

    Google Scholar 

  9. F. R. Salemme, S. T. Freer, N. H. Xuong, et al., J. Biol. Chem.,248, No. 11, 3910–3921 (1973).

    Google Scholar 

  10. G. B. Jameson, F. S. Molinaro, J. A. Ibers, et al., J. Am. Chem. Soc.,102, 3224–3237 (1980).

    Google Scholar 

  11. G. B. Jameson, G. A. Rodley, W. T. Robinson, et al., Inorg. Chem.,17, No. 4, 850–857 (1978).

    Google Scholar 

  12. G. B. Jameson, S. S. Molinaro, J. A. Ibers, et al., J. Am. Chem. Soc.,100, 6769 (1978).

    Google Scholar 

  13. G. Lang and W. Marshall, Proc. Phys. Soc. (London),87, 3–34 (1966).

    Google Scholar 

  14. A. Trautwein, H. Eicher, and A. Mayer, J. Chem. Phys.,52, No. 5, 2473–2477 (1970).

    Google Scholar 

  15. A. Trautwein, Y. Maeda, F. B. Harris, et al., Theor. Chim. Acta,36, 67–76 (1974).

    Google Scholar 

  16. M. Sharrock, E. Munck, P. C. Debrunner, et al., Biochemistry12, 258 (1973).

    Google Scholar 

  17. L. Cianchi, F. Pieralli, F. Del Guallo, et al., Phys. Lett.,100A, No. 1, 57–63 (1984).

    Google Scholar 

  18. M. Cerdonio, A. Congiu-Castellano, F. Mogno, et al., Proc. Natl. Acad. Sci. U.S.A.,74, 398 (1977).

    Google Scholar 

  19. M. Cerdonio, A. Congiu-Castellano, L. Calabrese, et al., Proc. Natl. Acad. Sci. U.S.A.,75, 4916 (1978).

    Google Scholar 

  20. Z. S. Herman and G. H. Loew, J. Am. Chem. Soc.,102, No. 6, 1815–1821 (1980).

    Google Scholar 

  21. Y. Maeda, J. Phys., Colloque C2,40, 2–500 (1979).

    Google Scholar 

  22. G. Lang and K. Spartalian, in: J. Gruverman and C. W. Seidel (editors), Mössbauer Effect Methodology (1976), Vol. 10, pp. 169–181.

  23. T. E. Tsai, J. L. Groves, and C. S. Wu, J. Chem. Phys.,74, No. 8, 4306–4314 (1981).

    Google Scholar 

  24. A. Trautwein, Y. Alpert, Y. Maeda, et al., J. Phys., Coloque C6,37, 191–197 (1976).

    Google Scholar 

  25. M. N. Oshtrakh and V. A. Semenkin, Mol. Biol.,19, No. 5, 1310–1320 (1985).

    Google Scholar 

  26. T. H. Moss, A. J. Bearden, and W. S. Caughey, J. Chem. Phys.,51, 2624–2631 (1969).

    Google Scholar 

  27. W. S. Caughey, H. Eberspaecher, W. N. Fuchman, et al., Ann. N.Y. Acad. Sci.,153, No. 3, 722–737 (1969).

    Google Scholar 

  28. C. Maricondi, D. K. Straub, and L. M. Epstein, J. Am. Chem. Soc.,94, No. 12, 4157–4167 (1972).

    Google Scholar 

  29. T. R. Fitzsimmons, J. R. Sams, and T. B. Tsin, Chem. Phys. Lett.,38, No. 3, 588–590 (1976).

    Google Scholar 

  30. R. É. Garibov, Author's abstract of dissertation for the degree of Candidate of Chemical Sciences, Institute of Biophysics, Ministry of Health of the USSR (1982).

  31. M. Blume, Phys. Rev. Lett.,14, 96 (1965);18, 305 (1967).

    Google Scholar 

  32. D. K. Straub and W. M. Coonnor, Ann. N.Y. Acad. Sci.,206, No. 2, 383–396 (1973).

    Google Scholar 

  33. L. Bullard, R. M. Panayappan, A. N. Thorpe, et al., Bioinorg. Chem.,3, No. 2, 161–164 (1974).

    Google Scholar 

  34. R. É. Garibov, V. V. Khrapov, E. I. Filipovich, et al., Dokl. Akad. Nauk SSSR,242, No. 4, 864–867 (1978).

    Google Scholar 

  35. E. V. Meilczarek, B. Balko, R. L. Berger, et al., J. Phys., Colloque 2,40, No. 3, 495–497 (1979).

    Google Scholar 

  36. M. Connor and D. K. Straub, Inorg. Chem.,18, No. 3, 866–867 (1979).

    Google Scholar 

  37. B. R. James, J. R. Sames, and T. B. Tsin, J. Chem. Soc. Chem. Comm.,17, 746–747 (1978).

    Google Scholar 

  38. R. É. Garibov, T. A. Babushkina, L. B. Luzgina, et al., Koord. Khim.,6, No. 7, 1046–1050 (1980).

    Google Scholar 

  39. S. B. Brown, Hatzikonstantinou, and D. G. Herries, Int. J. Biochem.,12, No. 5/6, 701–707 (1980).

    Google Scholar 

  40. K. S. Murray, Coord. Chem. Rev.,12, 1–35 (1974).

    Google Scholar 

  41. W. R. Leenstract, J. Chem. Phys.,71, No. 8, 3535–3541 (1979).

    Google Scholar 

  42. M. A. Torrens, D. K. Straub, and L. M. Epstein, J. Am. Chem. Soc.,94, No. 12, 4160–4162 (1972).

    Google Scholar 

  43. D. H. Dolphin, J. R. Sams, T. B. Tsin, et al., J. Am. Chem. Soc.,100, No. 6, 1711–1718 (1978).

    Google Scholar 

  44. D. Rhynard, G. Lang, K. Spartalian, and T. Yonetani, J. Chem. Phys.,71, No. 9, 3715–3719 (1979).

    Google Scholar 

  45. R. É. Garibov, V. I. Khleskov, and A. I. Lumpov, Teor. Éksp. Khim.,20, No. 2, 157–163 (1984).

    Google Scholar 

  46. H. Eicher, D. Bade, and F. Parak, J. Chem. Phys.,64, No. 4, 1446–1455 (1976).

    Google Scholar 

  47. M. Bacci, M. Cerdonio, and S. Vitale, Biophys. Chem.,10, 113–117 (1979).

    Google Scholar 

  48. S. P. Ionov and B. N. Gavrilov, Zh. Fiz. Khim.,54, No. 11, 2721–2738 (1980).

    Google Scholar 

  49. M. Zerner and M. Gouterman, Theor. Chim. Acta,4, 44–63 (1966).

    Google Scholar 

  50. M. Zerner, M. Gouterman, and H. Kobayashi, Theor. Chim. Acta,6, 363–400 (1966).

    Google Scholar 

  51. A. Trautwein, Struct. Bonding,20, 101–167 (1974).

    Google Scholar 

  52. W. R. Scheidt and D. M. Chipman, J. Am. Chem. Soc.,108, No. 6, 1163–1167 (1986).

    Google Scholar 

  53. G. H. Loew and R. F. Kirchner, Int. J. Quant. Chem.,5, 403–415 (1978).

    Google Scholar 

  54. V. I. Khleskov, B. N. Burykin, and R. É. Garibov, Teor. Éksp. Khim.,21, No. 2, 146–153 (1985).

    Google Scholar 

  55. V. I. Khleskov, R. E. Garibov and A. B. Smirnov, in: Y. M. Kagan and I. S. Lyubutin (editors), Applications of the Mössbauer Effect (ICAME-1983), Vol. 5, Gordon and Breach (1985), pp. 1597–1605.

  56. V. I. Khleskov, B. N. Burykin, and R. É. Garibov, in: Y. M. Kagan and I. S. Lyubutin (editors), Applications of the Mössbauer Effect (ICAME-1983), Vol. 5, Gordon and Breach (1985), 1591–1595.

  57. B. N. Burykin, V. I. Khleskov, and R. É. Garibov, Teor. Éksp. Khim.,22, No. 5, 553–562 (1986).

    Google Scholar 

  58. A. Trautwein, R. Zimmermann, and F. E. Harris, Theor. Chim. Acta,37, 89–104 (1975).

    Google Scholar 

  59. A. Trautwein and F. E. Harris, Theor. Chim. Acta,38, 65–69 (1975).

    Google Scholar 

  60. D. A. Case, B. H. Huynh, and M. Karplus, J. Am. Chem. Soc.,101, No. 16, 4433–4452 (1979).

    Google Scholar 

  61. Y. Seno, N. Kameda, and J. Otsuka, J. Chem. Soc.,72, No. 11, 6048–6069 (1980).

    Google Scholar 

  62. E. Kai and K. Nishimoto, Bull. Chem. Soc. Jpn.,55, 1242–1245 (1982).

    Google Scholar 

  63. I. P. Beletskii and K. B. Yatsimirskii, Teor. Éksp. Khim.,20, No. 5, 513–519 (1984).

    Google Scholar 

  64. G. H. Loew, Z. S. Herman, and M. C. Zerner, Int. J. Quant. Chem.,18, 481–492 (1980).

    Google Scholar 

  65. Z. S. Herman, G. H. Loew, and M. M. Rohmer Int. J. Quant. Chem.: Quant. Biol. Symp.,7, 137–153 (1980).

    Google Scholar 

  66. T. Nozawa, M. Natano, U. Nagashima, et al., Bull. Chem. Soc. Jpn.,56, 1721–1727 (1983).

    Google Scholar 

  67. M. M. Rohmer, A. Strich, and A. Veillard, Theor. Chim. Acta,65, 219–231 (1984).

    Google Scholar 

  68. M. M. Rohmer, Chem. Phys. Lett.,116, No. 1, 44–49 (1985).

    Google Scholar 

  69. V. I. Khleskov, Zh. Strukt. Khim.,27, No. 4, 172–173 (1986).

    Google Scholar 

  70. A. B. Smirnov, V. I. Khleskov, Document deposited in the All-Union Institute of Scientific and Technical Information of the Academy of Sciences of the USSR (VINITI), No. 5131-V87, July 16, 1987, pp. 1–10.

    Google Scholar 

  71. V. I. Khleskov, Document deposited in the All-Union Institute of Scientific and Technical Information of the Academy of Sciences of the USSR (VINITI), No. 7354-V86, Oct. 22, 1986, pp. 1–26.

    Google Scholar 

  72. E. B. Fleischer, Acc. Chem. Res.,3, 105–112 (1970).

    Google Scholar 

  73. A. M. Karo, F. McMurphy, and R. K. Nesbet, Phys. Rev.,165, No. 1, 123–126 (1968).

    Google Scholar 

  74. Y. Maeda, T. Harami, Y. Morita, et al., J. Chem. Phys.,75, No. 1, 36–43 (1981).

    Google Scholar 

  75. T. A. Kent, K. Spartalian, G. Lang, et al., Biochim. Biophys. Acta,490, 331–340 (1977).

    Google Scholar 

  76. T. A. Kent, K. Spartalian, G. Lang, et al., Biochim. Biophys. Acta,580 245–258 (1979)

    Google Scholar 

  77. R. F. Kirchner and G. H. Loew, J. Am. Chem. Soc.,108, No. 6, 1163–1167 (1986).

    Google Scholar 

  78. L. Cianchi, M. Mancini, G. Spina, and S. R. Cappelletti, J. Theor. Biol.,67, 757–763 (1977).

    Google Scholar 

  79. M. Cerdonio, A. Congiu-Castellano, et al., Proc. Natl. Acad. Sci. U.S.A.,74, 398 (1977);75, 4916 (1978).

    Google Scholar 

  80. S. Obara and H. Kashiwagi, J. Chem. Phys.,77, No. 6, 3155–3165 (1982).

    Google Scholar 

  81. T. Nozawa, M. Natano, U. Nagashima, et al., Bull. Chem. Soc. Jpn.,56, 1721–1727 (1983).

    Google Scholar 

  82. M. M. Rohmer, A. Dedieu, and A. Veillard, Chem. Phys.,77, 449–462 (1983).

    Google Scholar 

  83. W. H. Flygare and D. W. Hafemeister, J. Chem. Phys.,43, No. 3, 789–794 (1965).

    Google Scholar 

  84. A. Trautwein, F. E. Harris, A. J. Freeman, et al., Phys. Rev.,11B, No. 11, 4104–4108 (1975).

    Google Scholar 

  85. J. C. Chang, Y. M. Kim, T. P. Das, et al., Theor. Chim. Acta,41, 37–49 (1976).

    Google Scholar 

  86. B. N. Burykin, V. I. Khleskov, Document deposited in the All-Union Institute of Scientific and Technical Information of the Academy of Sciences of the USSR (VINITI), No. 1799-V86, March 17, 1986, pp. 1–45.

    Google Scholar 

  87. K. J. Duff, Phys. Rev.,9B, No. 1, 66–72 (1974).

    Google Scholar 

  88. B. N. Burykin and V. I. Khleskov, Teor. Éksp. Khim.,23, No. 4, 506–508 (1987).

    Google Scholar 

  89. B. N. Burykin, V. I. Khleskov, M. I. Oshtrakh, et al., Mol. Biol.,21, No. 6, 1677–1685 (1987).

    Google Scholar 

  90. B. N. Burykin and V. I. Khleskov, in: Abstracts of Reports to the Ninth All-Union Conference and Physical and Mathematical Methods in Coordination Chemistry [in Russian], Vol. 1, Novosibirsk (1987), p. 128.

  91. B. N. Burykin, V. I. Khleskov, and R. É. Garibov, Zh. Strukt. Khim.,29, No. 3, 144–147 (1988).

    Google Scholar 

  92. V. I. Khleskov, A. B. Smirnov, and R. É. Garibov, Koord. Khim.,15, No. 3, 308–315 (1989).

    Google Scholar 

  93. L. J. Radonovich, A. Bloom, and J. L. Hoard, J. Am. Chem. Soc.,94, No. 6, 2073 (1978).

    Google Scholar 

  94. G. Lang, D. Herbert, and T. Yonetani, J. Chem. Phys.,49, No. 2, 944–950 (1968).

    Google Scholar 

  95. K. Tatsumi and R. Hoffmann, J. Am. Chem. Soc.,103, No. 12, 3328–3341 (1981).

    Google Scholar 

  96. A. B. Hoffman, D. M. Collins, V. W. Day, et al., J. Am. Chem. Soc.,97, No. 10, 3620–3626 (1972).

    Google Scholar 

Download references

Authors

Additional information

Institute of Biophysics, Ministry of Health of the USSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 30, No. 4, pp. 148–162, July–August, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khleskov, V.I., Burykin, B.N. & Smirnov, A.B. Electronic structure of iron porphyrins and hemoproteins and parameters of their Mössbauer spectra. J Struct Chem 30, 656–671 (1989). https://doi.org/10.1007/BF00751463

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751463

Keywords

Navigation