Skip to main content

NMR Spectroscopy on Flavins and Flavoproteins

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

1H-, 11B-, 13C-, 15N-, 17O-, 19F-, and 31P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state 13C- and 15N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes.

Most NMR studies on flavoproteins were performed using 13C- and 15N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, 31P-NMR data of all so far studied flavoproteins and some 19F-NMR spectra are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fagan RL, Palfey BA (2010) Flavin-dependent enzymes. In: Begley TP (ed) Comprehensive natural products II, vol 7. Elsevier Ltd., New York, NY, pp 37–114

    Google Scholar 

  2. Losi A, Gärtner W (2011) Old chromophores, new photoactivation paradigms, trendy applications: flavins in LOV and BLUF photoreceptors. Photochem Photobiol 87:491–510

    PubMed  CAS  Google Scholar 

  3. van Peé K-H, Patallo EP (2006) Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl Microbiol Biotechnol 70:631–641

    PubMed  Google Scholar 

  4. Fischer M, Bacher A (2008) Biosynthesis of vitamin B2: structure and mechanism of riboflavin synthase. Arch Biochem Biophys 474:252–265

    PubMed  CAS  Google Scholar 

  5. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    PubMed  CAS  Google Scholar 

  6. Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17

    PubMed  CAS  Google Scholar 

  8. van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    PubMed  Google Scholar 

  9. Bornemann S (2002) Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep 19:761–772

    PubMed  CAS  Google Scholar 

  10. Unno H, Yamashita S, Ikeda Y, Sekiguchi S, Yoshida N, Yashimura T, Kusunoki M, Nakayama T, Nishino T, Hemmi H (2009) New role of flavin as a general acid–base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase. J Biol Chem 284:9160–9167

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Müller F (1991) Free flavins: synthesis, chemical and physical properties. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol I. CRC, Boca Raton, FL, pp 1–71

    Google Scholar 

  12. Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics – a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634

    PubMed  CAS  Google Scholar 

  13. Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25:126–132

    PubMed  CAS  Google Scholar 

  14. Mewies M, McIntire WS, Scrutton NS (1998) Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci 7:7–20

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Mansoorabadi SO, Thibodeaux CJ, Liu H-W (2007) The diverse roles of flavin coenzymes – nature’s most versatile thespians. J Org Chem 72:6329–6342

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Heuts DPHM, Scrutton NS, McIntire WS, Fraaije MW (2009) What’s in a covalent bond? On the role and formation of covalently bound flavin cofactors. FEBS J 276:3405–3427

    PubMed  CAS  Google Scholar 

  17. Senda T, Senda M, Kimura S, Ishida T (2009) Redox control of protein conformation in flavoproteins. Antioxid Redox Signal 11:1741–1766

    PubMed  CAS  Google Scholar 

  18. Becker DF, Zhu W, Moxley MA (2011) Flavin redox switching of protein functions. Antioxid Redox Signal 14:1079–1091

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Ghisla S, Massey V (1986) New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J 239:1–12

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Edmondson D, Ghisla S (1999) Flavoenzyme structure and function – approaches using flavin analogues. Meth Mol Biol 131:157–179

    CAS  Google Scholar 

  21. Vervoort J, Hefti M (1999) NMR of flavoproteins. Meth Mol Biol 131:131–147

    Google Scholar 

  22. Kitevski-LeBlanc JL, Prosser RS (2012) Current application of 19F NMR to studies of protein structure and dynamics. Prog Nucl Magn Reson Spectrosc 62:1–33

    PubMed  CAS  Google Scholar 

  23. Skrisovska L, Schubert M, Allain FH-T (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46:51–65

    PubMed  CAS  Google Scholar 

  24. Zhao X (2012) Protein structure determination by solid-state NMR. Top Curr Chem 326:187–213

    PubMed  CAS  Google Scholar 

  25. Lu GJ, Son WS, Opella SJ (2011) A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J Magn Reson 209:195–206

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Thamarath SS, Heberle J, Hore PJ, Kottke T, Matysik J (2010) Solid-state photo-CIDNP effect observed in phototropin LOV1-C575 by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc 132:15542–15543

    PubMed  CAS  Google Scholar 

  27. Tal A, Frydman L (2010) Single-scan multidimensional magnetic resonance. Prog Nucl Magn Reson Spectrosc 57:241–292

    PubMed  CAS  Google Scholar 

  28. Zhu J, Ye E, Terskikh V, Wu G (2011) Experimental verification of the theory of nuclear quadrupole relaxation in liquids over the entire range of molecular tumbling motion. J Phys Chem Lett 2:1020–1023

    CAS  Google Scholar 

  29. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5:808–814

    PubMed  CAS  Google Scholar 

  30. Kanamori E, Igarashi S, Osawa M, Fukunishi Y, Shimada I, Nakamura H (2011) Structure determination of a protein assembly by amino acid selective cross-saturation. Proteins 79:179–190

    PubMed  CAS  Google Scholar 

  31. Joo C-G, Casey A, Turner CJ, Griffin RG (2009) In situ temperature-jump dynamic nuclear polarization: enhanced sensitivity in two dimensional 13C–13C correlation spectroscopy in solution. J Am Chem Soc 131:12–13

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Lee JH, Sekhar A, Cavagnero S (2011) 1H-detected 13C photo-CIDNP as a sensitivity enhancement tool in solution NMR. J Am Chem Soc 133:8062–8065

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Jameson CJ, De Dios AC (2010) Theoretical and physical aspects of nuclear shielding. Nucl Magn Reson 39:42–69

    CAS  Google Scholar 

  34. Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P (2001) NMR nomenclature. Nuclear spin properties and conventions for chemical shifts. Pure Appl Chem 73:1795–1818

    CAS  Google Scholar 

  35. Harris RK, Becker ED, Cabral de Menezes SM, Granger P, Hoffmann RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts. Pure Appl Chem 80:59–84

    CAS  Google Scholar 

  36. Müller F, Ghisla S, Bacher A (1988) Vitamin B2 und natürliche flavine. In: Isler O, Brubacher G, Ghisla S, Kräutler R (eds) Vitamine II, wasserlösliche vitamine. Thieme Verlag Stuttgart, New York, NY, pp 50–159

    Google Scholar 

  37. Müller F (1992) Nuclear magnetic resonance studies on flavoproteins. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 557–595

    Google Scholar 

  38. Yagi K, Ohishi N, Takai A, Kawano K, Kyogoku Y (1976) 15N nuclear magnetic resonance of flavins. Biochemistry 15:2877–2780

    PubMed  CAS  Google Scholar 

  39. Kawano K, Ohishi N, Suzuki AT, Kyogoku Y, Yagi K (1978) Nitrogen-15 and carbon-13 nuclear magnetic resonance of reduced flavins. Comparative study with oxidized flavins. Biochemistry 17:3854–3859

    PubMed  CAS  Google Scholar 

  40. Grande HJ, Gast R, van Schagen CG, van Berkel WJH, Müller F (1977) 13C-NMR. Study on isoalloxazine and alloxazine derivatives. Helv Chim Acta 60:367–379

    CAS  Google Scholar 

  41. Müller F, Vervoort J, Lee J, Horowitz M, Carreira LA (1983) Coherent anti-stokes Raman spectra of isoalloxazines. J Raman Spectrosc 14:106–117

    Google Scholar 

  42. Vervoort J, Müller F, O’Kane DJ, Lee J, Bacher A (1986) Bacterial luciferase: a carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance investigation. Biochemistry 25:8067–8075

    CAS  Google Scholar 

  43. Chang F-C, Swenson RP (1999) The midpoint potentials for the oxidized–semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Biochemistry 38:7168–7176

    PubMed  CAS  Google Scholar 

  44. Grininger M, Zeth K, Oesterhelt D (2006) Dodecins: a family of lumichrome binding proteins. J Mol Biol 357:842–857

    PubMed  CAS  Google Scholar 

  45. Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D (2009) Dodecin is the key player in flavin homeostasis of Archaea. J Biol Chem 284:13068–13076

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Bullock FJ, Jardetzky O (1965) An experimental demonstration of the nuclear magnetic resonance assignments in the 6,7-dimethyl-isoalloxazine nucleus. J Org Chem 30:2056–2057

    CAS  Google Scholar 

  47. Sarma RH, Dannies P, Kaplan NO (1968) Investigations of inter- and intramolecular interactions in flavin-adenine dinucleotide by proton magnetic resonance. Biochemistry 7:4359–4367

    PubMed  CAS  Google Scholar 

  48. Kotowycz G, Teng N, Klein MP, Calvin M (1969) The 220 MHz nuclear magnetic resonance study of a solvent-induced conformational change in flavin adenine dinucleotide. J Biol Chem 244:5656–5662

    PubMed  CAS  Google Scholar 

  49. Kainosho M, Kyogoku Y (1972) High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin-adenine dinucleotide and its conformation in aqueous solution. Biochemistry 11:741–752

    PubMed  CAS  Google Scholar 

  50. Raszka M, Kaplan NO (1974) Intramolecular hydrogen bonding in flavin adenine dinucleotide. Proc Natl Acad Sci U S A 71:4546–4550

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Grande HJ, van Schagen CG, Jarbandhan T, Müller F (1977) An 1H-NMR spectroscopic study of alloxazines and isoalloxazines. Helv Chim Acta 60:348–366

    CAS  Google Scholar 

  52. Malele CN, Ray J, Jones WE Jr (2010) Synthesis, characterization and spectroscopic study of riboflavin–molybdenum complex. Polyhedron 29:749–756

    CAS  Google Scholar 

  53. Edwards AM, Saldaño A, Bueno C, Silva E, Alegría S (2000) Spectroscopic properties of hydrophobic flavin esters. A one and two-dimensional 1H-NMR and 13C-NMR study. Bol Soc Chil Quim 45:423–431

    CAS  Google Scholar 

  54. Favaudon V, Le Gall J, Lhoste J-M (1980) Nuclear magnetic resonance of flavodoxin from sulfite-reducing bacteria. In: Yagi K, Yamano T (eds) Flavins and flavoproteins. Japan Scientific Societies Press, Tokyo, pp 373–386

    Google Scholar 

  55. Insinska-Rak M, Sokorska E, Bourdelande JL, Khmelinskii IV, Prukala W, Dobek K, Karolczak J, Machado IF, Ferreira LFV, Komasa A, Worrall DR, Sikorski M (2006) Spectroscopy and photophysics of flavin-related compounds: 5-deaza-riboflavin. J Mol Struct 783:184–190

    CAS  Google Scholar 

  56. Kennedy AA (2009) Biomimetic models for redox enzyme systems. Ph.D. Thesis, University of Glasgow

    Google Scholar 

  57. Ménová P, Eigner V, Cejka J, Dvoráková H, Sanda M, Cibulka R (2011) Synthesis and structural studies of flavin and alloxazine adducts. J Mol Struct 1004:178–187

    Google Scholar 

  58. Williamson G, Edmondson DE (1986) 1H NMR spectral analysis of the ribityl side chain of riboflavin and its ring-substituted analogs. Methods Enzymol 122:240–248

    PubMed  CAS  Google Scholar 

  59. Ulrich EL, Westler WM, Markley JL (1983) Reassignments in the 1H NMR spectrum of flavin adenine dinucleotide by two-dimensional homonuclear chemical shift correlation. Tetrahedron Lett 24:473–476

    CAS  Google Scholar 

  60. Roberie T, Bhacca NS, Selbin J (1977) High resolution 1H nuclear magnetic resonance studies of a flavine and its product with MoCl4. Can J Chem 55:575–582

    CAS  Google Scholar 

  61. Isobe M, Uyakul D, Goto T (1988) Lampteromyces bioluminescence – 2. Lampteroflavin, a light emitter in the luminous mushroom, L. japonicus. Tetrahedron Lett 29:1169–1172

    CAS  Google Scholar 

  62. Uyakul D, Isobe M, Goto T (1989) Lampteromyces bioluminescence. 3. Structure of lampteroflavin, the light emitter in the luminous mushroom, L. japonicus. Bioorg Chem 17:454–460

    CAS  Google Scholar 

  63. Kellogg RM, Kruizinga W, Bystrykh LV, Dijkhuizen L, Harder W (1992) Structural analysis of a stereochemical modification of flavin adenine dinucleotide in alcohol oxidase from methylotrophic yeasts. Tetrahedron 48:4147–4162

    CAS  Google Scholar 

  64. Fraiz FJ, Pinto RM, Costas MJ, Ávalos M, Canales J, Cabezas A (1998) Enzymic formation of riboflavin 4′,5′-cyclic phosphate from FAD: evidence for a specific low-K m FMN in rat liver. Biochem J 330:881–888

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Williamson G, Edmondson DE (1985) Proton nuclear magnetic resonance studies of 8α-N-imidazolylriboflavin in its oxidized and reduced forms. Biochemistry 24:7918–7926

    PubMed  CAS  Google Scholar 

  66. Edmondson DE (1977) 2′,5′-Anhydro-8α-histidylflavins: their formation and structural elucidation. Biochemistry 16:4308–4311

    PubMed  CAS  Google Scholar 

  67. Otani S, Matsui K, Kasai S (1997) Chemistry and biochemistry of 8-aminoflavins. Osaka City Med J 43:107–137

    PubMed  CAS  Google Scholar 

  68. Edmondson DE, De Francesco R (1991) Structure, synthesis, and physical properties of covalently bound flavins and 6- and 8-hydroxyflavins. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 73–103

    Google Scholar 

  69. Andrew ER, Glowinkowski S (2000) Molecular dynamics in solid riboflavin as studied by 1H NMR. Solid State Nucl Magn Reson 18:89–96

    PubMed  CAS  Google Scholar 

  70. Seward EM, Hopkins RB, Sauerer W, Tam S-W, Diederich F (1990) Redox-dependent binding of a flavin cyclophane in aqueous solution: hydrophobic stacking versus cavity-inclusion complexation. J Am Chem Soc 112:1783–1790

    CAS  Google Scholar 

  71. Takeda J, Ota S, Hirobe M (1987) Synthesis and characterization of novel flavin-linked porphyrins. Mechanism for flavin-catalyzed inter- and intramolecular 2e/1e electron-transfer reactions. J Am Chem Soc 109:7677–7688

    CAS  Google Scholar 

  72. Niemz A, Rotello VM (1996) Model systems for flavoenzyme activity. The effects of specific hydrogen bonds on the 13C and 1H NMR of flavins. J Mol Recognit 9:158–162

    PubMed  CAS  Google Scholar 

  73. Caldwell ST, Cooke G, Hewage SG, Mabruk S, Rabani G, Rotello V, Smith BO, Subramani C, Woisel P (2008) Model systems for flavoenzyme activity: intramolecular self-assembly of a flavin derivative via hydrogen bonding and aromatic interactions. Chem Commun (Camb) 35:4126–4128

    Google Scholar 

  74. Deans R, Rotello VM (1996) Model systems for flavoenzyme activity. 2-Aminopyridines as spectroscopic models for flavoenzyme active sites. Tetrahedron Lett 37:4435–4438

    CAS  Google Scholar 

  75. Chattopadhyay P, Nagpal R, Pandey PS (2008) Recognition properties of flavin analogues with bile acid-based receptors: role of steric effects in hydrogen bond based molecular recognition. Aust J Chem 61:216–222

    CAS  Google Scholar 

  76. Rai R, Pandey PS (2005) Comparative binding study of steroidal adenine with flavin and uracil derivatives. Bioorg Med Chem Lett 15:2923–2925

    PubMed  CAS  Google Scholar 

  77. Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) An artificial riboflavin receptor prepared by a template analogue imprinting strategy. Angew Chem Int Ed 44:3902–3906

    CAS  Google Scholar 

  78. Evstigneev MP, Rozvadovskaya AO, Chubarov AS, Hernandez Santiago AA, Davies DB, Veselkov AN (2005) Structural and thermodynamic analysis of heteroassociation of daunomycin and flavin mononucleotide molecules in water by 1H NMR spectroscopy. J Struct Chem 46:67–74

    CAS  Google Scholar 

  79. Evstigneev MP, Rozvadovskaya AO, Hernandez Santiago AA, Mukhina YV, Veslekov KA, Rogova OV, Davies DB, Veselkov AN (2005) A 1H NMR study of the association of caffeine with flavin mononucleotide in aqueous solution. Russ J Phys Chem 79:573–578

    CAS  Google Scholar 

  80. Evstigneev MP, Mukhina YV, Davies DB (2006) 1H NMR study of the hetero-association of flavin-mononucleotide with mutagenic dyes: ethidium bromide and proflavine. Mol Phys 104:647–654

    CAS  Google Scholar 

  81. Andrejuk DD, Hernandez Santiago AA, Khomich VV, Voronov VK, Davies DB, Estigneev MP (2008) Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules. J Mol Struct 889:229–236

    CAS  Google Scholar 

  82. Evstigneev MP, Mykhina YV, Davies DB (2005) Complexation of daunomycin with a DNA oligomer in the presence of an aromatic vitamin (B2) determined by NMR spectroscopy. Biophys Chem 118:118–127

    PubMed  CAS  Google Scholar 

  83. Lauterwein J, Hemmerich P, Lhoste J-M (1975) Flavoquinone–metal complexes. I. Structure and properties. Inorg Chem 14:2152–2161

    CAS  Google Scholar 

  84. Lauterwein J, Hemmerich P, Lhoste J-M (1972) Proton magnetic-resonance studies of flavoquinone–metal complexes. Z Naturforsch 27B:1047–1049

    Google Scholar 

  85. Lauterwein J, Hemmerich P, Lhoste J-M (1975) Flavoquinone–metal complexes. II. Paramagnetic interactions. Inorg Chem 14:2161–2168

    CAS  Google Scholar 

  86. Kierkegaard P, Leijonmarck M, Werner P-E (1972) Studies on flavin derivatives. X-ray structure investigation of 1′,2′,3′,4′-tetraacetyl-3-ethyl-riboflavin zinc-chelate perchlorate. Acta Chem Scand 26:2980–2982

    CAS  Google Scholar 

  87. Heilmann O, Hornung FM, Fiedler J, Kaim W (1999) Organometallic iridium(III) and rhenium(I) complexes with lumazine, alloxazine and pterin derivatives. J Organomet Chem 589:2–10

    CAS  Google Scholar 

  88. Kaim W, Schwederski B, Heilmann O, Hornung FM (1999) Coordination compounds of pteridine, alloxazine and flavin ligands: structures and properties. Coord Chem Rev 182:323–342

    Google Scholar 

  89. Clarke MJ, Dowling MG, Garafalo AR, Brennan TF (1980) Structural and electronic effects resulting from metal-flavin ligation. J Biol Chem 255:3472–3481

    PubMed  CAS  Google Scholar 

  90. Miyazaki S, Kojima T, Fukuzumi S (2008) Photochemical and thermal isomerization of a ruthenium(II)–alloxazine complex involving an unusual coordination mode. J Am Chem Soc 130:1556–1557

    PubMed  CAS  Google Scholar 

  91. Miyazaki S, Ohkubo K, Kojima T, Fukuzumi S (2007) Modulation of characteristics of a ruthenium-coordinated flavin analogue that shows an unusual coordination mode. Angew Chem Int Ed 46:905–908

    CAS  Google Scholar 

  92. Hornung FM, Heilmann O, Kaim W, Zalis S, Fiedler J (2000) Metal vs ligand reduction in complexes of 1,3-diemthylalloxazine (DMA) with copper(I), ruthenium(II), and tungsten(VI). Crystal structures of (DMA)WO2Cl2 and (bis(1-methylimidazol-2-yl)ketone)WO2Cl2. Inorg Chem 39:4052–4058

    PubMed  CAS  Google Scholar 

  93. Kaufmann HL, Carroll PJ, Burgmayer SJN (1999) Molybdenum–pterin chemistry. 2. Reinvestigation of molybdenum (IV) coordination by flavin gives evidence for partial pteridine reduction. Inorg Chem 38:2600–2606

    CAS  Google Scholar 

  94. Benno RH, Fritchie CJ Jr (1973) Metal–flavin interactions: the crystal structure of bis-(10-methylisoalloxazine) silver nitrite tetrahydrate and similar disordered nitrate–nitrite. Acta Cryst B 29:2493–2502

    CAS  Google Scholar 

  95. Fritchie CJ Jr (1972) The structure of a metal-flavin complex. 10-Methylisoalloxazine silver nitrate. J Biol Chem 247:7459–7464

    PubMed  CAS  Google Scholar 

  96. Wade TD, Fritchie CJ Jr (1973) The crystal structure of a riboflavin-metal complex. Riboflavin silver perchlorate hemihydrate. J Biol Chem 248:2337–2343

    PubMed  CAS  Google Scholar 

  97. Garland WT, Fritchie CJ Jr (1974) Metalloflavoprotein models. The crystal structure of bis(riboflavin) bis(cupric perchlorate) dodecahydrate. J Biol Chem 240:2228–2234

    Google Scholar 

  98. Yu MW, Fritchie CJ Jr (1975) Interaction of flavins with electron-rich metals. The crystal structure of bis(10-methylisoalloxazine) copper(I) perchlorate formic acid. J Biol Chem 250:946–951

    PubMed  CAS  Google Scholar 

  99. Knappe W-R, Hemmerich P (1976) Reduktive photoalkylierung des flavinkerns; struktur und reaktivität der photoprodukte. Liebigs Ann Chem 1976:2037–2057

    Google Scholar 

  100. de Gonzalo G, Smit C, Jin J, Minnaard AJ, Fraaije MW (2011) Turning a riboflavin-binding protein into a self-sufficient monooxygenase by cofactor redesign. Chem Commun 47:11050–11052

    Google Scholar 

  101. Lindén AA, Hermanns N, Ott S, Krüger L, Bäckvall J-E (2005) Preparation and redox properties of N, N, N,-trialkylated flavin derivatives and their activity as redox catalysts. Chem Eur J 11:112–119

    Google Scholar 

  102. Ghisla S, Hartmann U, Hemmerich P, Müller F (1973) Die reduktive alkylierung des flavinkerns; struktur und reaktivität von dihydroflavinen. Liebigs Ann Chem 1973:1388–1415

    Google Scholar 

  103. Li W-S, Zhang N, Sayre LM (2001) N1, N10-Ethylene-bridged high-potential flavins: synthesis, characterization, and reactivity. Tetrahedron 57:4507–4522

    CAS  Google Scholar 

  104. Müller F (1972) On the reaction of flavins with phosphine-derivatives. Z Naturforsch 27B:1023–1026

    Google Scholar 

  105. Eckstein JW, Hastings JW, Ghisla S (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 32:404–411

    PubMed  CAS  Google Scholar 

  106. Breitmaier E, Voelter W (1987) Carbon-13 NMR spectroscopy. VCH-Wiley Inc., New York, NY

    Google Scholar 

  107. Eisenreich W, Joshi M, Illarionov B, Richter G, Römisch-Margl W, Müller F, Bacher A, Fischer M (2007) 13C Isotopologue editing of FMN bound to phototropin domains. FEBS J 274:5876–5890

    PubMed  CAS  Google Scholar 

  108. van Schagen CG, Müller F (1981) A 13C nuclear-magnetic-resonance study on free flavins and Megasphaera elsdenii and Azotobacter vinelandii flavodoxin. 13C-enriched flavins as probes for the study of flavoprotein active sites. Eur J Biochem 120:33–39

    PubMed  Google Scholar 

  109. Ferrán Á, Claramunt RM, López C, Pinilla E, Torres MR, Elguero J (2007) Structural characterization of alloxazine and substituted isoalloxazines: NMR and x-ray crystallography. ARKIVOC IV:20–38

    Google Scholar 

  110. Schmaderer H (2009) New flavins and their application to chemical photocatalysis. Ph.D. thesis, University of Regensburg, Germany

    Google Scholar 

  111. Moonen CTW, Vervoort J, Müller F (1984) Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry 23:4859–4867

    PubMed  CAS  Google Scholar 

  112. Lhoste J-M, Favaudon V, Ghisla S, Hastings JW (1980) NMR studies of 13C-4a enriched flavins with luciferase and other flavoproteins. In: Yagi K, Yamano T (eds) Flavins and flavoproteins. Japan Scientific Societies Press, Tokyo, pp 131–138

    Google Scholar 

  113. Li W-S, Sayre LM (2001) Reaction of amines with N1, N10-ethylene-bridged flavinium salts: the first NMR spectroscopic evidence of C10a tetrahedral amine adducts. Tetrahedron 57:4523–4536

    CAS  Google Scholar 

  114. Vervoort J, Müller F, unpublished data

    Google Scholar 

  115. Müller F, Dudley KH (1971) The synthesis and borohydride reduction of some alloxazine derivatives. Helv Chim Acta 54:1487–1497

    PubMed  Google Scholar 

  116. Dudley KH, Ehrenberg A, Hemmerich P, Müller F (1964) Spektren und strukturen der am flavin-redoxsystem beteiligten partikeln. Helv Chim Acta 47:1354–1383

    CAS  Google Scholar 

  117. Sanz D, Perona A, Claramunt RM, Pinilla E, Torres MR, Elguero J (2010) Protonation effects on the chemical shifts of Schiff bases derived from 3-hydroxypyridin-4-carboxaldehyde. ARKIVOC III:102–113

    Google Scholar 

  118. Franken H-D, Rüterjans H, Müller F (1984) Nuclear-magnetic-resonance investigation of 15N-labeled flavins, free and bound to Megasphaera elsdenii apoflavodoxin. Eur J Biochem 138:481–489

    PubMed  CAS  Google Scholar 

  119. Breitmayer E, Voelter W (1972) A 13C nuclear-magnetic-resonance study of the enzyme cofactor flavin-adenine dinucleotide. Eur J Biochem 31:234–238

    Google Scholar 

  120. Koder RL, Lichtenstein BR, Cerda JF, Miller A-F, Dutton PL (2007) A flavin analogue with improved solubility in organic solvents. Tetrahedron Lett 48:5517–5520

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Cui D, Koder RL Jr, Dutton PL, Miller A-F (2011) 15N solid-state NMR as a probe of flavin H-bonding. J Phys Chem B 115:7788–7798

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Koder RL Jr, Walsh JD, Pometun MS, Dutton PL, Wittebort RJ, Miller A-F (2006) 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites. J Am Chem Soc 128:15200–15208

    PubMed  CAS  Google Scholar 

  123. Walsh JD, Miller A-F (2003) NMR shieldings and electron correlation reveal remarkable behavior on the part of the flavin N5 reactive center. J Phys Chem B 107:854–863

    CAS  Google Scholar 

  124. Reibenspies JH, Guo F, Rizzo CJ (2000) X-ray crystal structures of conformationally biased flavin models. Org Lett 2:903–906

    PubMed  CAS  Google Scholar 

  125. Wouters J, Evrard G, Durant F (1995) Lumiflavinium (7,8,10-trimethyl-isoalloxazinium) nitrate. Acta Cryst C51:1223–1227

    CAS  Google Scholar 

  126. Zheng Y-J, Ornstein RL (1996) A theoretical study of structures of flavin in different oxidation and protonation states. J Am Chem Soc 118:9402–9408

    CAS  Google Scholar 

  127. Hall LH, Orchard BJ, Tripathy SK (1987) The structure and properties of flavins: molecular orbital study based on totally optimized geometries. I. Molecular geometry investigations. Int J Quantum Chem 31:195–216

    CAS  Google Scholar 

  128. Hall LH, Orchard BJ, Tripathy SK (1987) The structure and properties of flavins: molecular orbital study based on totally optimized geometries. II. Molecular orbital structure and electron distribution. Int J Quantum Chem 31:217–242

    CAS  Google Scholar 

  129. van Schagen CG, Müller F (1980) A comparative 13C-NMR. study on various reduced flavins. Helv Chim Acta 63:2187–2201

    Google Scholar 

  130. Macheroux P, Ghisla S, Sanner C, Rüterjans H, Müller F (2005) Reduced flavin: NMR investigation of N(5)-H exchange mechanism, estimation of ionization constants and assessment of properties as biological catalyst. BMC Biochem 6:26–36

    PubMed Central  PubMed  Google Scholar 

  131. Moonen CTW, Vervoort J, Müller F (1984) Carbon-13 nuclear magnetic resonance study on the dynamics of the conformation of reduced flavin. Biochemistry 23:4868–4872

    PubMed  CAS  Google Scholar 

  132. Tauscher L, Ghisla S, Hemmerich P (1973) NMR.-study of nitrogen inversion and conformation of 1,5-dihydro-isoalloxazones ('reduced flavin'). Helv Chim Acta 56:630–644

    PubMed  CAS  Google Scholar 

  133. Hall LH, Bowers ML, Durfor CN (1987) Further consideration of flavin coenzyme biochemistry afforded by geometry-optimized molecular orbital calculations. Biochemistry 26:7401–7409

    PubMed  CAS  Google Scholar 

  134. Rodríguez-Otero J, Martínez-Núñez E, Peña-Gallego A, Vázquez SA (2002) The role of aromaticity in the planarity of lumiflavin. J Org Chem 67:6347–6352

    PubMed  Google Scholar 

  135. Rizzo CJ (2001) Further computational studies on the conformation of 1,5-dihydrolumiflavin. Antioxid Redox Signal 3:737–746

    PubMed  CAS  Google Scholar 

  136. Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E, Massey V, Rüdiger W, Müller F, Bacher A, Richter G (2001) An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci U S A 98:12357–12361

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Vervoort J, Müller F, Lee J, van den Berg WAM, Moonen CTW (1986) Identification of the true carbon-13 nuclear magnetic resonance spectrum of the stable intermediate II in bacterial luciferase. Biochemistry 25:8062–8067

    CAS  Google Scholar 

  138. Žurek J, Cibulka R, Dvořáková H, Svoboda J (2010) N1, N10-ethylen-bridged flavinium salts derived from l-valinol: synthesis and catalytic activity in H2O2 oxidations. Tetrahedron Lett 51:1083–1086

    Google Scholar 

  139. Müller F, Lee J (2001) A convenient method to prepare labile FMN derivatives. Molecules 6:825–830

    Google Scholar 

  140. Müller F (1971) On the reaction of flavins with alcohols. In: Kamin H (ed) Flavins and flavoproteins. University Park Press, London, pp 363–373

    Google Scholar 

  141. Müller F, Grande HJ, Jarbandhan T (1976) On the interaction of flavins with oxygen ions and molecular oxygen. In: Singer TP (ed) Flavins and flavoproteins. Elsevier Scientific Publishing Co., Amsterdam, pp 38–50

    Google Scholar 

  142. Szczesna V, Müller F, Vervoort J (1990) Synthesis and properties of a new dihydroflavin: reduction of a flavinium salt by borocyanohydride. Helv Chim Acta 73:1669–1678

    CAS  Google Scholar 

  143. van Schagen CG, Grande HJ, Müller F (1978) The structure of σ-complexes between flavinium salts and methoxide as revealed by 13C nuclear magnetic resonance. Recl Trav Chim Pays-Bas 97:179–180

    Google Scholar 

  144. Bolognesi M, Ghisla S, Incoccia L (1978) The crystal and molecular structure of two models of catalytic flavo(co)enzyme intermediates. Acta Cryst B34:821–828

    CAS  Google Scholar 

  145. Sanner C, Rüterjans H, Müller F, unpublished work

    Google Scholar 

  146. van Duin M, Peters JA, Kieboom APG, van Bekkum H (1984) Studies on borate esters I. The pH dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B-NMR. Tetrahedron 40:2901–2911

    Google Scholar 

  147. van Duin M, Peters JA, Kieboom APG, van Bekkum H (1985) Studies on borate esters II. Structure and stability of borate esters of polyhydroxycarboxylates and related polyols in aqueous alkaline media as studied by 11B-NMR. Tetrahedron 41:3411–3421

    Google Scholar 

  148. Zhu J, Wu G (2010) Quadrupole central transition 17O NMR spectroscopy of biological macromolecules in aqueous solution. J Am Chem Soc 133:920–932

    PubMed  Google Scholar 

  149. Müller F, unpublished data

    Google Scholar 

  150. Nishina Y, Sato K, Miura R, Matsui K, Shiga K (1998) Resonance Raman study on reduced flavin in purple intermediate of flavoenzyme: use of [4-carbonyl-18O]-enriched flavin. J Biochem 124:200–208

    PubMed  CAS  Google Scholar 

  151. Delseth C, Nguyen TT-T, Kitzinger J-P (1980) Oxygen-17 and carbon-13 nuclear magnetic resonance. Chemical shifts of unsaturated carbonyl compounds and acyl derivatives. Helv Chim Acta 63:498–503

    CAS  Google Scholar 

  152. Dudley KH, Hemmerich P (1967) Stabile dihydroflavine und quartäre flaviniumsalze. Studien in der flavinreihe. 12. Mitteilung. Helv Chim Acta 50:355–363

    CAS  Google Scholar 

  153. Müller F, van Berkel WJH (1982) A study on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. A convenient method of preparation and some properties of the apoenzyme. Eur J Biochem 128:21–27

    PubMed  Google Scholar 

  154. van Berkel WJH, van den Berg WAM, Müller F (1988) Large-scale preparation and reconstitution of apo-flavoproteins with special reference to butyryl-CoA dehydrogenase from Megasphaera elsdenii. Hydrophobic interaction chromatography. Eur J Biochem 178:197–207

    PubMed  Google Scholar 

  155. Gostimskaya IS, Grivennikova VG, Cecchini G, Vinogradov AD (2007) Reversible dissociation of flavin mononucleotide from mammalian membrane-bound NADH:ubiquinone oxidoreductase (complex I). FEBS Lett 581:5803–5806

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Fruk L, Kuo C-H, Torres E, Niemeyer CM (2009) Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew Chem Int Ed 48:1550–1574

    CAS  Google Scholar 

  157. Husain M, Massey V (1978) Reversible resolution of flavoproteins into apoproteins and free flavins. Methods Enzymol 53:429–437

    PubMed  CAS  Google Scholar 

  158. Hefti MH, Milder FJ, Boeren S, Vervoort J, van Berkel WJH (2003) A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. Biochim Biophys Acta 1619:139–143

    PubMed  CAS  Google Scholar 

  159. Mathes T, Vogel C, Stolz J, Hegemann P (2009) In vivo generation of flavoproteins with modified cofactors. J Mol Biol 385:1511–1518

    PubMed  CAS  Google Scholar 

  160. van Müller F, Berkel WJH (1991) Methods used to reversibly resolve flavoproteins into the constituents apoflavoprotein and prosthetic group. In: Müller F (ed) Flavins and flavoproteins. CRC, Boca Raton, FL, pp 261–274

    Google Scholar 

  161. Hefti MH, Vervoort J, van Berkel WJH (2003) Deflavination and reconstitution of flavoproteins. Tackling fold and function. Eur J Biochem 270:4227–4242

    PubMed  CAS  Google Scholar 

  162. van der Bolt FJT, van den Heuvel RHH, Vervoort J, van Berkel WJH (1997) 19F NMR study on the regiospecificity of hydroxylation of tetrafluoro-4-hydroxybenzoate by wild-type and Y385F p-hydroxybenzoate hydroxlase: evidence for a consecutive oxygenolytic dahalogenation mechanism. Biochemistry 36:14192–14201

    PubMed  Google Scholar 

  163. Moonen MJH, Rietjens IMCM, van Berkel WJH (2001) 19F NMR study on the biological Baeyer–Villiger oxidation of acetophenones. J Ind Microbiol Biotechnol 26:35–42

    CAS  Google Scholar 

  164. Macheroux P, Kojiro CL, Schopfer LM, Chakraborty S, Massey V (1990) 19F NMR studies on 8-fluoroflavins and 8-fluoro flavoproteins. Biochemistry 29:2670–2679

    PubMed  CAS  Google Scholar 

  165. Miura R, Kasai S, Horiike K, Sugimoto K, Matsui K, Yamano T, Miyake Y (1983) 8-fluoro-8-demethylriboflavin as a 19F-probe for flavin-protein interaction. A 19F NMR study with egg white riboflavin binding protein. Biochem Biophys Res Commun 110:406–411

    PubMed  CAS  Google Scholar 

  166. Monaco HL (1997) Crystal structure of chicken riboflavin-binding protein. EMBO J 16:1475–1483

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Murthy YVSN, Massey V (1995) Chemical modification of the N-10 ribityl side chain of flavins. Effects on properties of flavoprotein disulfide oxidoreductases. J Biol Chem 270:28586–28594

    PubMed  CAS  Google Scholar 

  168. Murthy YVSN, Massey V (1996) 19F NMR studies with 2′-F-2′-deoxyarabinoflavoproteins. J Biol Chem 271:19915–19921

    CAS  Google Scholar 

  169. Miller SM (1993) 2′-Fluoro-2′-deoxy-arabino-FAD: effects on the formation and stability of 2-electron reduced mercuric ion reductase. In: Yagi K (ed) Flavins and flavoproteins. De Gruyter, Berlin, pp 575–582

    Google Scholar 

  170. Visser NV, Westphal AH, Nabuurs SM, van Hoek A, van Mierlo CPM, Visser AJWG, Broos J, van Amerongen H (2009) 5-Fluorotryptophan as dual probe for ground-state heterogeneity and excited-state dynamics in apoflavodoxin. FEBS Lett 583:2785–2788

    PubMed  CAS  Google Scholar 

  171. Miura R (1989) 19F-NMR study on the interaction of fluorobenzoate with porcine kidney d-amino acid oxidase. J Biochem 105:318–322

    PubMed  CAS  Google Scholar 

  172. Sun Z-Y, Truong H-TN, Pratt EA, Sutherland DC, Kulig CE, Homer RJ, Groetsch SM, Hsue PY, Ho C (1993) A 19F-NMR study of the membrane-binding region of d-lactate dehydrogenase of Escherichia coli. Protein Sci 2:1938–1947

    PubMed Central  PubMed  CAS  Google Scholar 

  173. Moonen CTW, Müller F (1982) Structural and dynamic information on the complex of Megasphaera elsdenii apoflavodoxin and riboflavin 5′-phosphate. A phosphorus-31 nuclear magnetic resonance study. Biochemistry 21:408–414

    PubMed  CAS  Google Scholar 

  174. Vervoort J, Müller F, Mayhew SG, van den Berg WAM, Moonen CTW, Bacher A (1986) A comparative carbon-13, nitrogen-15, and phosphorus-31 nuclear magnetic resonance study on the flavodoxins from Clostridium MP, Megasphaera elsdenii, and Azotobacter vinelandii. Biochemistry 25:6789–6799

    PubMed  CAS  Google Scholar 

  175. Otvos JD, Krum DP, Masters BSS (1986) Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH–cytochrome P-450 reductase using 31P NMR spectroscopy. Biochemistry 25:7220–7228

    PubMed  CAS  Google Scholar 

  176. James TL, Edmondson DE, Husain M (1981) Glucose oxidase contains a disubstituted phosphorus residue. Phosphorus-31 nuclear magnetic resonance studies of the flavin and nonflavin phosphate residues. Biochemistry 20:617–621

    PubMed  CAS  Google Scholar 

  177. Edmondson DE, James TL (1979) Covalently bound non-coenzyme phosphorus residues in flavoproteins: 31P nuclear magnetic resonance studies of Azotobacter vinelandii. Proc Natl Acad Sci U S A 76:3786–3789

    PubMed Central  PubMed  CAS  Google Scholar 

  178. Klugkist J, Voorberg J, Haaker H, Veeger C (1986) Characterization of three different flavodoxins from Azotobacter vinelandii. Eur J Biochem 155:33–40

    PubMed  CAS  Google Scholar 

  179. Gangeswaran R, Eady RR (1996) Flavodoxin 1 of Azotobacter vinelandii: characterization and role in electron donation to purified assimilatory nitrate reductase. Biochem J 317:103–108

    PubMed Central  PubMed  CAS  Google Scholar 

  180. Stockman BJ, Westler WM, Mooberry ES, Markley JL (1988) Flavodoxin from Anabena 7120: uniform nitrogen-15 enrichment and hydrogen-1, nitrogen-15 and phosphorus-31 NMR investigations of the flavin mononucleotide binding site in the reduced and oxidized states. Biochemistry 27:136–142

    PubMed  CAS  Google Scholar 

  181. Thorneley RNF, Abell C, Ashby GA, Drummond MH, Eady RR, Huff S, Macdonald CJ, Shneier A (1992) Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment to coenzyme A, shown by 31P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation. Biochemistry 31:1216–1224

    PubMed  CAS  Google Scholar 

  182. Miller MS, Mas MT, White HB (1984) Highly phosphorylated region of chicken riboflavin-binding protein: chemical characterization and 31P NMR studies. Biochemistry 23:569–576

    PubMed  CAS  Google Scholar 

  183. Fleischmann G, Lederer F, Müller F, Bacher A, Rüterjans H (2000) Flavin–protein interactions in flavocytochrome b 2 as studied by NMR after reconstitution of the enzyme with 13C- and 15N-labelled flavin. Eur J Biochem 267:5156–5167

    PubMed  CAS  Google Scholar 

  184. Beinert W-D, Rüterjans H, Müller F, Bacher A (1985) Nuclear magnetic resonance studies of the old yellow enzyme. 2. 13C NMR of the enzyme recombined with 13C-labeled flavin mononucleotides. Eur J Biochem 152:581–587

    PubMed  CAS  Google Scholar 

  185. Miura R, Yamano T, Miyake Y (1986) 31P- and 13C-NMR studies on the flavin-protein and flavin-ligand interactions in Brewer’s yeast old yellow enzyme. J Biochem 99:907–914

    PubMed  CAS  Google Scholar 

  186. Griffin KJ, Degala GD, Eisenreich W, Müller F, Bacher A, Frerman FE (1998) 13P-NMR spectroscopy of human and Paracoccus denitrificans electron transfer flavoproteins, and 13C- and 15N-NMR spectroscopy of human electron transfer flavoprotein in the oxidised and reduced states. Eur J Biochem 255:125–132

    PubMed  CAS  Google Scholar 

  187. Pust S, Vervoort J, Decker K, Bacher A, Müller F (1989) 13C, 15N, and 31P NMR studies on 6-hydroxy-l-nicotine oxidase from Arthrobacter oxidans. Biochemistry 28:516–521

    PubMed  CAS  Google Scholar 

  188. Eisenreich W, Kemter K, Bacher A, Mulrooney SB, Williams CH, Müller F (2004) 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem 271:1437–1452

    PubMed  CAS  Google Scholar 

  189. Vervoort J, van Berkel WJH, Müller F, Moonen CTW (1991) NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida. Eur J Biochem 200:731–738

    PubMed  CAS  Google Scholar 

  190. Gomez-Moreno C, Sancho J, Fillat M, Pueyo JJ, Edmondson DE (1987) Complex formation between ferredoxin-NADP+-oxidoreductase and flavodoxin. In: Edmondson DE, McCormick DB (eds) Flavins and flavoproteins. de Gruyter, Berlin, pp 335–339

    Google Scholar 

  191. Davis MD, Edmondson DE, Müller F (1984) 31P Nuclear magnetic resonance and chemical studies of the phosphorus residues in bovine milk xanthine oxidase. Eur J Biochem 145:237–243

    PubMed  CAS  Google Scholar 

  192. Evrard A, Zeghouf M, Fontecave M, Roby C, Covès J (1999) 31P nuclear magnetic resonance study of the flavoprotein component of the Escherichia coli sulfite reductase. Eur J Biochem 261:430–437

    PubMed  CAS  Google Scholar 

  193. Nonaka Y, Fujii S, Yamano T (1985) Phosphorus-31 nuclear magnetic resonance and electronic spectroscopic studies of adrenodoxin reductase and its binary complex with NADP+. J Biochem 97:1263–1271

    PubMed  CAS  Google Scholar 

  194. Macheroux P, Sanner C, Büttner H, Kieweg V, Rüterjans H, Ghisla S (1997) Medium-chain acyl CoA dehydrogenase: evidence for phosphorylation. Biol Chem 378:1381–1385

    PubMed  CAS  Google Scholar 

  195. Bonants PJM, Müller F, Vervoort J, Edmondson DE (1990) A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Eur J Biochem 190:531–537

    Google Scholar 

  196. Gorenstein DG, Debojyoti K (1975) 31P chemical shifts in phosphate diester monoanions. Bond angle and torsional angle effects. Biochem Biophys Res Commun 65:1073–1080

    PubMed  CAS  Google Scholar 

  197. Gorenstein DG (1975) Dependence of 31P chemical shifts on oxygen–phosphorus–oxygen bond angles in phosphate esters. J Am Chem Soc 97:898–900

    CAS  Google Scholar 

  198. James TL, Ludwig ML, Cohn M (1973) Dependence of the proton magnetic resonance spectra on the oxidation state of flavodoxin from Clostridium MP and from Peptostreptococcus elsdenii. Proc Natl Acad Sci U S A 70:3292–3295

    PubMed Central  PubMed  CAS  Google Scholar 

  199. Moonen CTW, Müller F, unpublished data

    Google Scholar 

  200. Burnett RM, Darling GD, Kendall DS, LeQuesne ME, Mayhew SG, Smith WW, Ludwig ML (1974) The structure of the oxidized form of clostridial flavodoxin at 1.9-Å resolution. Description of the flavin mononucleotide binding site. J Biol Chem 249:4383–4392

    PubMed  CAS  Google Scholar 

  201. Moonen CTW, Vervoort J, Müller F (1984) Some new ideas about the possible regulation of redox potentials in flavoproteins, with special reference to flavodoxins. In: Bray RC, Engel PC, Mayhew SG (eds) Flavins and flavoproteins. de Gruyter, Berlin, pp 493–496

    Google Scholar 

  202. Live DH, Edmondson DE (1988) Studies of phosphorylated sites in proteins using 1H–31P two-dimensional NMR: further evidence for a phosphodiester link between a seryl and a threonyl residue in Azotobacter flavodoxin. J Am Chem Soc 110:4468–4470

    CAS  Google Scholar 

  203. Vervoort J, van Berkel WJH, Mayhew SG, Müller F, Bacher A, Nielsen P, LeGall J (1986) Properties of the complexes of riboflavin 3′,5′-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. Eur J Biochem 161:749–756

    PubMed  CAS  Google Scholar 

  204. Ueda T, Kato A, Kuramitsu S, Terasawa H, Shimada I (2005) Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27. J Biol Chem 280:36237–36243

    PubMed  CAS  Google Scholar 

  205. Chang F-C, Bradley LH, Swenson RP (2001) Evaluation of the hydrogen bonding interactions and their effects on the oxidation-reduction potentials for the riboflavin complex of the Desulfovibrio vulgaris flavodoxin. Biochim Biophys Acta 1504:319–328

    PubMed  CAS  Google Scholar 

  206. Bradley LH, Swenson RP (2001) Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potential of the Clostridium beijerinckii flavodoxin. Biochemistry 40:8686–8695

    PubMed  CAS  Google Scholar 

  207. Kasim M, Chen H-C, Swenson RP (2009) Functional characterization of the re-face loop spanning residues 526–541 and its interactions with the cofactor in the flavin mononucleotide-binding domain of flavocytochrome P450 from Bacillus megaterium. Biochemistry 48:5131–5141

    PubMed Central  PubMed  CAS  Google Scholar 

  208. Vervoort J, Müller F, LeGall J, Bacher A, Sedlmaier H (1985) Carbon-13 and nitogen-15 nuclear-magnetic-resonance investigation on Desulfovibrio vulgaris flavodoxin. Eur J Biochem 151:49–57

    PubMed  CAS  Google Scholar 

  209. Beinert W-D, Rüterjans H, Müller F (1985) Nuclear magnetic resonance studies of the old yellow enzyme. 1. 15N NMR of the enzyme recombined with 15N-labeled flavin mononucleotides. Eur J Biochem 152:573–579

    PubMed  CAS  Google Scholar 

  210. Stockman BJ, Krezel AM, Markley JL (1990) Hydrogen-1, carbon-13 and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of β-sheet and flavin binding site resonances and analysis of protein–flavin interactions. Biochemistry 29:9600–9609

    PubMed  CAS  Google Scholar 

  211. Miura R, Miyake Y (1987) 13C-NMR studies of procine kidney d-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. Effects of competitive inhibitors. J Biochem 101:581–589

    PubMed  CAS  Google Scholar 

  212. Moonen CTW, van den Berg WAM, Boerjan M, Müller F (1984) Carbon-13 and nitrogen-15 nuclear magnetic resonance study on the interaction between riboflavin and riboflavin-binding apoprotein. Biochemistry 23:4873–4878

    CAS  Google Scholar 

  213. Miura R, Tojo H, Fujii S, Yamano T, Miyake Y (1984) A 13C-NMR study on the interaction of riboflavin with egg white riboflavin binding protein. J Biochem 96:197–206

    PubMed  CAS  Google Scholar 

  214. Sanner C, Macheroux P, Rüterjans H, Müller F, Bacher A (1991) 15N- and 13C-NMR investigations of glucose oxidase from Aspergillus niger. Eur J Biochem 196:663–672

    PubMed  CAS  Google Scholar 

  215. Doherty GM, Mayhew SG, Malthouse JPG (1993) 13C-n.m.r. of the cyanalated apoflavodoxin and flavodoxin from Clostridium pasteurianum. Biochem J 294:215–218

    PubMed Central  PubMed  CAS  Google Scholar 

  216. Doherty GM, Motherway R, Mayhew SG, Malthouse JPG (1992) 13C NMR of cyanylated flavodoxin from Megasphaera elsdenii and of thiocyanate model compounds. Biochemistry 31:7922–7930

    PubMed  CAS  Google Scholar 

  217. Miura R, Yamano T, Miyake Y (1986) The heterogeneity of Brewer’s yeast old yellow enzyme. J Biochem 99:901–906

    PubMed  CAS  Google Scholar 

  218. Miura R, Nishina Y, Sato K, Fujii S, Kuroda K, Shiga K (1993) 13C- and 15N-NMR studies on medium-chain acyl-CoA dehydrogenase reconstituted with 13C- and 15N-enriched flavin adenine dinucleotide. J Biochem 112:106–113

    Google Scholar 

  219. Miura R, Miyake Y (1987) 13C-NMR studies on the reaction intermediates of porcine kidney d-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. J Biochem 102:1345–1354

    PubMed  CAS  Google Scholar 

  220. Ponstingl H, Otting G (1997) NMR assignments, secondary structure and hydration of oxidized Escherichia coli flavodoxin. Eur J Biochem 244:384–399

    PubMed  CAS  Google Scholar 

  221. Moonen CTW, Müller F (1983) On the mobility of riboflavin 5′-phosphate in Megasphaera elsdenii favodoxin as studied by 13C-nuclear-magnetic-resonance relaxation. Eur J Biochem 133:463–470

    PubMed  CAS  Google Scholar 

  222. Ludwig ML, Schopfer LM, Metzger AL, Pattrige KA, Massey V (1990) Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins. Biochemistry 29:10364–10375

    PubMed  CAS  Google Scholar 

  223. Yalloway GN, Mayhew SG, Malthouse JPG, Gallagher ME, Curley GP (1999) pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins. Biochemistry 38:3753–3762

    PubMed  CAS  Google Scholar 

  224. McDonald CC, Phillips WD (1969) Proton magnetic resonance spectra of proteins in random-coil configurations. J Am Chem Soc 91:1513–1521

    PubMed  CAS  Google Scholar 

  225. Crespi HL, Norris JR, Katz JJ (1972) Magnetic resonance of isotope hybrid flavoprotein 2H-flavoprotein (1H-flavin mononucleotide). Nat New Biol 236:178–180

    PubMed  CAS  Google Scholar 

  226. Crespi HL, Norris JR, Rays JP, Katz JJ (1973) ESR and NMR studies with deuterated flavodoxin. Ann New York Acad Sci 222:800–815

    CAS  Google Scholar 

  227. Pluta PL, Crespi HL, Klein M, Blake MI, Studier MH, Katz JJ (1976) Biosynthesis of deuterated riboflavin: structure determination by NMR and mass spectrometry. J Pharm Sci 65:362–366

    PubMed  CAS  Google Scholar 

  228. Lubas B, Soltysik M, Steczko J, Ostrowski W (1977) Proton NMR study of the interaction of riboflavin with the egg-yolk apoprotein. FEBS Lett 79:179–182

    PubMed  CAS  Google Scholar 

  229. Blicharska B, Sagnowski S, Steczko J, Ostrowski W (1977) Relaxation and line-width nuclear magnetic resonance of egg-yolk flavoproteins. In: Ostrowski W (ed) Flavins and flavoproteins: physicochemical properties and function. Polish Scientific Publishers, Warsaw, Cracow, pp 51–61

    Google Scholar 

  230. Favaudon V, LeGall J, Lhoste J-M (1976) Proton magnetic resonance of Desulfovibrio vulgaris and Desulfovibrio gigas flavodoxins. In: Singer TP (ed) Flavins and flavoproteins. Elsevier Scientific Publishing Co., Amsterdam, pp 434–438

    Google Scholar 

  231. van Schagen CG, Müller F (1981) High resolution 1H NMR study at 360 MHz on the flavodoxin from Megasphaera elsdenii. FEBS Lett 136:75–79

    Google Scholar 

  232. Moonen CTW, Müller F (1984) On the intermolecular electron transfer between different redox states of flavodoxin from Megasphaera elsdenii. A 500-MHz 1H NMR study. Eur J Biochem 140:303–309

    PubMed  CAS  Google Scholar 

  233. Moonen CTW, Müller F (1984) A proton-nuclear-magnetic-resonance study at 500 MHz on Megasphaera elsdenii flavodoxin. A study on the stability, proton exchange and the assignment of some resonance lines. Eur J Biochem 140:311–318

    PubMed  CAS  Google Scholar 

  234. Langdon GM, Jiménez MA, Genzor CG, Maldonado S, Sancho J, Rico M (2001) Anabaena apoflavodoxin hydrogen exchange: on the stable exchange core of the α/β(21345) flavodoxin-like family. Proteins 43:476–488

    PubMed  CAS  Google Scholar 

  235. Moonen CTW, Scheek RM, Boelens R, Müller F (1984) The use of two-dimensional nuclear-magnetic-resonance spectroscopy and two-dimensional difference spectra in the elucidation of the active center of Megasphaera elsdenii flavodoxin. Eur J Biochem 141:323–330

    PubMed  CAS  Google Scholar 

  236. van Mierlo CPM, Vervoort J, Müller F, Bacher A (1990) A two-dimensional 1H NMR study on Megasphaera elsdenii flavodoxin in the reduced state. Sequential assignments. Eur J Biochem 187:521–541

    PubMed  Google Scholar 

  237. van Mierlo CPM, Müller F, Vervoort J (1990) Secondary and tertiary structure characteristics of Megasphaera elsdenii flavodoxin in the reduced state as determined by two-dimensional 1H NMR. Eur J Biochem 189:589–600

    PubMed  Google Scholar 

  238. van Mierlo CPM, Lijnzaad P, Vervoort J, Müller F, Berendsen HJC, de Vlieg J (1990) Tertiary structure of two-electron reduced Megasphaera elsdenii flavodoxin and some implications, as determined by two-dimensional 1H-NMR and restrained molecular dynamics. Eur J Biochem 194:185–198

    PubMed  Google Scholar 

  239. van Mierlo CPM, van der Sanden BPJ, van Woensel P, Müller F, Vervoort J (1990) A two-dimensional 1H-NMR study on Megasphaera elsdenii flavodoxin in the oxidized state and some comparisons with the two-electron reduced state. Eur J Biochem 194:199–216

    PubMed  Google Scholar 

  240. Wijmenga SS, van Mierlo CPM (1991) Three-dimensional correlated NMR study of Megasphaera elsdenii flavodoxin in the oxidized state. Eur J Biochem 195:807–822

    PubMed  CAS  Google Scholar 

  241. Watt W, Tulinsky A, Swenson RP, Watenpaugh KD (1991) Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol 218:195–208

    PubMed  CAS  Google Scholar 

  242. Knauf MA, Löhr F, Curley GP, O’Farrell P, Mayhew SG, Müller F, Rüterjans H (1993) Homonuclear and heteronuclear NMR studies of oxidized Desulfovibrio vulgaris flavodoxin. Sequential assignments and identification of secondary structure elements. Eur J Biochem 213:167–184

    PubMed  CAS  Google Scholar 

  243. Knauf MA, Löhr F, Blümel M, Mayhew SG, Rüterjans H (1996) NMR investigation of the solution conformation of oxidized flavodoxin from Desulfovibrio vulgaris. Determination of the tertiary structure and detection of protein-bound water molecules. Eur J Biochem 238:423–434

    PubMed  CAS  Google Scholar 

  244. Schmidt JM, Löhr F, Rüterjans H (1996) Heteronuclear relayed E.COSY applied to the determination of accurate 3J(HN, C′) and 3J(Hβ, C′) coupling constants in Desulfovibrio vulgaris flavodoxin. J Biomol NMR 7:142–152

    PubMed  CAS  Google Scholar 

  245. Hrovat A, Blümel M, Löhr F, Mayhew SG, Rüterjans H (1997) Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. J Biomol NMR 10:53–62

    PubMed  CAS  Google Scholar 

  246. Löhr F, Mayhew SG, Rüterjans H (2000) Detection of scalar couplings across NH⋅⋅⋅OP and OH⋅⋅⋅OP hydrogen bonds in a flavoprotein. J Am Chem Soc 122:9289–9295

    Google Scholar 

  247. Löhr F, Yalloway GN, Mayhew SG, Rüterjans H (2004) Cofactor-apoprotein hydrogen bonding in oxidized and fully reduced flavodoxin monitored by trans-hydrogen-bond scalar couplings. ChemBioChem 5:1523–1534

    PubMed  Google Scholar 

  248. Blümel M, Schmidt JM, Löhr F, Rüterjans H (1998) Quantitative ϕ torsion angle analysis in Desulfovibrio vulgaris flavodoxin based on six ϕ related 3 J couplings. Eur Biophys J 27:321–334

    Google Scholar 

  249. Peelen S, Vervoort J (1994) Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Arch Biochem Biophys 314:291–300

    PubMed  CAS  Google Scholar 

  250. Peelen S, Wijmenga SS, Erbel PJA, Robson RL, Eady RR, Vervoort J (1996) Possible role of a short extra loop of the long-chain flavodoxin from Azotobacter chroococcum in electron transfer to nitrogenase: complete 1H, 15N and 13C backbone assignments and secondary solution structure of the flavodoxin. J Biomol NMR 7:315–330

    PubMed  CAS  Google Scholar 

  251. Steensma E, Nijman MJM, Bollen YJM, de Jager PA, van den Berg WAM, van Dongen WMAM, van Mierlo CPM (1998) Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding. Protein Sci 7:306–317

    PubMed Central  PubMed  CAS  Google Scholar 

  252. Steensma E, van Mierlo CPM (1997) Structural characterisation of apoflavodoxin shows that the location of the stable nucleus differs among proteins with a flavodoxin-like topology. J Mol Biol 282:653–666

    Google Scholar 

  253. Nabuurs SM, Westphal AH, van Mierlo CPM (2009) Noncooperarive formation of the off-pathway molten globule during folding of the α-β parallel protein apoflavodoxin. J Am Chem Soc 131:2739–2746

    PubMed  CAS  Google Scholar 

  254. Liu W, Flynn PF, Fuentes EJ, Kranz JK, McCormick M, Wand AJ (2001) Main chain and side chain dynamics of oxidized flavodoxin from Cyanobacterium anabaena. Biochemistry 40:14744–14753

    PubMed  CAS  Google Scholar 

  255. Nabuurs SM, van Mierlo CPM (2010) Interrupted hydrogen/deuterium exchange reveals the stable core of the remarkably helical nolten globule of α-β parallel protein flavodoxin. J Biol Chem 285:4865–4872

    Google Scholar 

  256. van Mierlo CPM, Steensma E (2000) Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story. J Biotechnol 79:281–298

    PubMed  Google Scholar 

  257. Bollen YJM, Westphal AH, Lindhoud S, van Berkel WJH, van Mierlo CPM (2012) Distant residues mediate picomolar binding affinity of a protein cofactor. Nat Commun 3:1010. doi:10.1038/ncomms2010

    PubMed Central  PubMed  Google Scholar 

  258. Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, Gardner KH (2011) Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn (LOV-HTH) DNA-bonding protein. Proc Natl Acad Sci U S A 108:9449–9454

    PubMed Central  PubMed  CAS  Google Scholar 

  259. Wu Q, Gardner KH (2009) Structure and insight into blue light-induced changes in the BlrP1 BLUF domain. Biochemistry 48:2620–2629

    PubMed  CAS  Google Scholar 

  260. Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH (2004) Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc 126:3390–3391

    PubMed  CAS  Google Scholar 

  261. Pollock JR, Swenson RP, Stockman BJ (1996) 1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio desulfuricans flavodoxin. J Biomol NMR 7:225–235

    PubMed  CAS  Google Scholar 

  262. Stockman BJ, Euvrard A, Kloosterman DA, Scahill TA, Swenson RP (1993) 1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy. J Biomol NMR 3:133–149

    PubMed  CAS  Google Scholar 

  263. Stockman BA, Richardson TE, Swenson RP (1994) Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implica tions for redox potential modulation. Biochemistry 33:15298–15308

    Google Scholar 

  264. Clubb RT, Thanabal V, Osborne C, Wagner G (1991) 1H and 15N resonance assignments of oxidized flavodoxin from Anacystis nidulans with 3D NMR. Biochemistry 30:7718–7730

    PubMed  CAS  Google Scholar 

  265. Champier L, Sibille N, Bersch B, Brutscher B, Blackledge M, Coves J (2002) Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain. Biochemistry 41:3770–3780

    PubMed  CAS  Google Scholar 

  266. Chatwood LL, Müller J, Gross JD, Wagner G, Lippard SJ (2004) NMR structure of the flavin domain from soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath). Biochemistry 43:11983–11991

    PubMed  CAS  Google Scholar 

  267. Barsukov I, Modi S, Lian L-Y, Sze KH, Paine JI, Wolf CR, Roberts CK (1997) 1H, 15N and 13C NMR resonance assignment, secondary structure and global fold of the FMN-binding domain of human cytochrome P450 reductase. J Biomol NMR 10:63–75

    PubMed  CAS  Google Scholar 

  268. Ellis J, Gutierrez A, Barsukov IL, Huang W-C, Grossmann JG, Roberts GC (2009) Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. J Biol Chem 284:36628–36637

    PubMed Central  PubMed  CAS  Google Scholar 

  269. Fantuzzi A, Meharenna YT, Briscoe PB, Guerlesquin F, Sadeghi SJ, Gilardi G (2009) Characterisation of the electron transfer and complex formation between flavodoxin from D. vulgaris and the haem domain of cytochrome P450 BN3 from B. megaterium. Biochim Biophys Acta 1787:234–241

    PubMed  CAS  Google Scholar 

  270. van Schagen CG, Müller F, Kaptein R (1982) Photochemically induced dynamic nuclear polarization study on flavin adenine dinucleotide and flavoproteins. Biochemistry 21:402–407

    PubMed  Google Scholar 

  271. Richter G, Weber S, Römisch W, Bacher A, Fischer M, Eisenreich W (2005) Photochemically induced dynamic nuclear polarization in a C450A mutant of the LOV2 domain of Avena sativa blue-light receptor phototropin. J Am Chem Soc 127:17245–17252

    PubMed  CAS  Google Scholar 

  272. Eisenreich W, Joshi M, Weber S, Bacher A, Fischer M (2009) Natural abundance solution 13C NMR studies of a phototropin with photoinduced polarization. J Am Chem Soc 130:13544–13545

    Google Scholar 

  273. Eisenreich W, Fischer M, Joshi M, Richter G, Bacher A, Weber S (2009) Tryptophan 13C nuclear-spin polarization generated by intraprotein electron transfer in a LOV2 domain of the blue-light receptor phototropin. Biochem Soc Trans 37:382–386

    PubMed  CAS  Google Scholar 

  274. Keizers PHJ, Mersinli B, Reinle W, Donauer J, Hiruma Y, Hannemann F, Overhand M, Bernhardt R, Ubbink M (2010) A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. Biochemistry 49:6846–6855

    PubMed  CAS  Google Scholar 

  275. Ueda T, Kato A, Ogawa Y, Torizawa T, Kuramitsui S, Iwai S, Terasawa H, Shimada I (2004) NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement. J Biol Chem 279:52574–52579

    PubMed  CAS  Google Scholar 

  276. Nabuurs SM, de Kort BJ, Westphal AH, van Mierlo CPM (2010) Non-native hydrophobic interactions detected in unfolded apoflavodoxin by paramagnetic relaxation enhancement. Eur Biophys J 39:689–698

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Müller, F. (2014). NMR Spectroscopy on Flavins and Flavoproteins. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics