Skip to main content
Log in

Determination of recombination and attachment rate constants from ballistic experiments

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

We present measurements of the electron concentration in wakes behind aluminum spherical models flying in air with velocity 3.4–5.7 km/sec at a pressure of 10–80 torr. We have calculated the heating and entrainment of aluminum from the surface of the models as they move within the flight range. We show that condensation of Al vapor may occur at distances of more than 100 diameters of the body and pressure ≳80 torr. We pose and solve the inverse problem of determining (from experimental data) the effective attachment coefficient for attachment to air molecules and the attachment rate constants for AlO+e→AlO, AlO2+e→AlO2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Andreev, N. N. Pilyugin, O. K. Taganov, and S. G. Tikhomirov, Investigation of Emission of Gases in an Aeroballistic Experiment [in Russian], Izdat. Mosk. Univ., Moscow (1988).

    Google Scholar 

  2. N. N. Baulin, E. V. Ermakova, and N. N. Pilyugin, “Determination of the physicochemical constants in the flow behind a body from ballistic experiments,” Teplofiz. Vysok. Temp.,30, No. 2, 299–310 (1992).

    Google Scholar 

  3. A. N. Pilyugin and N. N. Pilyugin, “Determination of the physicochemical constants in the wake behind a body flying in nitrogen from ballistic experiments,” Astron. Vestn.,27, No. 5, 112–122 (1993).

    ADS  Google Scholar 

  4. A. N. Pilyugin, N. N. Pilyugin, and S. G. Tikhomirov, “Determination of the recombination constants for recombination of electrons with ions from ballistic experiments,” Teplofiz. Vysok. Temp.,31, No. 4, 517–525 (1993).

    Google Scholar 

  5. S. Yu. Menzhinskii and N. N. Pilyugin, “Determination of the physicochemical constants in the wake behind a body flying in argon with hypersonic velocity,” Teplofiz. Vysok. Temp.,31, No. 5, 787–794 (1993).

    Google Scholar 

  6. N. N. Pilyugin, S. G. Tikhomirov, and S. Yu. Chernyavskii, “Approximation method for calculation of the parameters of the air and radiant intensity in a far wake,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 165–175 (1980).

    Google Scholar 

  7. V. M. Kornegei, “Fall-off of electron density in wakes,” Raket. Tekh. Kosmon. [Russian translation of AIAA J.],3, No. 10, 37–42 (1965).

    Google Scholar 

  8. R. E. Slattery, W. G. Clay, and W. C. Wortington, “Range contamination and its effect on measurements,” Proceedings of the Second Congress on Instrum. in Aerospace Simulation Facilities, ICIASF'66, Record (1966), pp. 1–15.

  9. H. Mach, “Spectroscopic studies in the wake of ablating models of hypersonic missiles” Raumfahrtforschung18, No. 1, 1–9 (1974).

    Google Scholar 

  10. N. N. Baulin, A. K. Dmitriev, N. N. Ivanchinov-Marinskii, et al. “Investigation of the flow behind a sphere for hypersonic flight velocity in air with an open microwave resonator,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 156–160 (1978).

    Google Scholar 

  11. V. B. Brodskii, S. E. Zagik, V. A. Lyutomskii, and G. I. Mishin, “Effect of the effective attachment coefficient for free electrons in ionized air of a hypersonic wake on a ballistic range,” Zh. Tekh. Fiz.,48, No. 5, 964–966 (1978).

    Google Scholar 

  12. L. P. Yarin and G. S. Sukhov, Principles of the Theory of Combustion of Two-Phase Media [in Russian], Énergoatomizdat, Leningrad (1987).

    Google Scholar 

  13. É. Z. Apshtein, N. N. Pilyugin, and G. A. Tirskii, “Investigation of disintegration of meteorite particles moving in the upper layers of the atmosphere,” Kosmich. Issled.,17, No. 6, 866–874 (1979).

    Google Scholar 

  14. J. L. Griffin and P. M. Sherman, “Computer analysis of condensation in highly expanded flows,” Raket. Tekh. Kosmon. [Russian translation of AIAA J.],3, No. 10, 29–36 (1965).

    Google Scholar 

  15. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  16. D. I. Zhukhovitskii, A. g. Khrapak, and I. T. Yakubov, “Ionization equilibrium in a plasma with a disperse condensed phase,” in: Plasma Chemistry: Collected Papers (B. M. Smirnov, ed.) [in Russian], No. 11, 130–137 (1984).

  17. N. N. Pilyugin, S. G. Tikhomirov, and S. Yu. Chernyavskii “Chemical kinetics in the far wake behind a body moving in air with hypersonic velocity,” in: Hypersonic Flows for Flow past Bodies and in Wakes [in Russian], Izdat. Mosk. Univ., Moscow (1983), pp. 5–19.

    Google Scholar 

  18. V. A. Kolemaev, O. V. Staroverov, and V. B. Turundaevskii, Probability Theory and Mathematical Statistics [in Russian], Vyssh. Shk., Moscow (1991).

    Google Scholar 

  19. A. E. Bezmenov and V. A. Aleksashenko, Radiophysical and Gasdynamic Problems of Passage through the Atmosphere [in Russian], Mashinostroenie, Moscow (1982).

    Google Scholar 

  20. N. N. Pilyugin, S. Yu. Menzhinskii, and A. N. Pilyugin, “Determination of the ternary recombination constant for recombination of electrons with aluminum ions from ballistic experiments,” Teplofiz. Vysok. Temp.,32, No. 5, 656–665 (1994).

    Google Scholar 

Download references

Authors

Additional information

Scientific-Research Institute of Mechanics, Moscow State University, Moscow 119899. Translated from Fizika Goreniya i Vzryva, Vol. 31, No. 5, pp. 70–82, September–October, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyugin, A.N., Pilyugin, N.N. Determination of recombination and attachment rate constants from ballistic experiments. Combust Explos Shock Waves 31, 566–576 (1995). https://doi.org/10.1007/BF00743808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743808

Keywords

Navigation