Skip to main content
Log in

Effect of cations on the temperature sensitivity of Ca2+ transport in rat-liver mitochondria and safranine uptake by liposomes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The activation energy of mitochondrial Ca2+ transport has been studied in various conditions by Arrhenius plots in the temperature range 6–20°C. In the presence of Mg2+ the activation energy is decreased to 18 kJ/mole from that of 40 kJ/mole found in a sucrose medium. In the presence of the polyamine spermine the activation energy is practically 0 kJ/mole. A lanthanide Eu3+, which is a potent inhibitor of Ca2+ transport, has no significant effect on the activation energy. In a KCl medium the activation energy is increased to 70 kJ/mole. When both K+ and Mg+ are present the activation energy is nonlinear between 11 and 18°C. In the presence of K+ and spermine it is about 0 kJ/mole between 6 and 13°C and at higher temperatures 68 kJ/mole. Neither Mg2+ nor spermine affect the slope of the Arrhenius plot for state 4 respiration. Spermine decreases slightly the activation energy of Ca2+-stimulated respiration. Spermine also decreases the activation energy of valinomycin- or gramicidin-induced safranine uptake by liposomes from 68 to almost 0 kJ/mole between 17 and 30°C. The results indicate that Ca2+ binding to the polar head groups of the phospholipids at the membrane surface is the rate-limiting step of mitochondrial Ca2+ transport, because agents that inhibit Ca2+ binding to these sites (Mg2+, spermine, K+) have the most marked effect, whereas Eu3+, which, because of the small concentration used, ought to interact mainly with the mitochondrial Ca2+ transport system, has no significant effect on the temperature sensitivity of mitochondrial Ca2+ transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Raison, J. M. Lyons, and W. W. Thompson,Arch. Biochem. Biophys.,142 (1971) 83.

    Google Scholar 

  2. P. J. Ainswoorth, R. M. Janki, E. R. Tustanoff, and A. J. S. Ball,Bioenergetics,6 (1974) 135.

    Google Scholar 

  3. M. P. Lee and A. R. L. Gear,J. Biol. Chem.,249 (1974) 7541.

    Google Scholar 

  4. K. Watson, R. L. Houghton, E. Bertoli, and D. E. Griffiths,Biochem. J.,146 (1975) 409.

    Google Scholar 

  5. E. Bertoli, J. B. Finean, and D. E. Griffiths,FEBS Lett.,61 (1976) 163.

    Google Scholar 

  6. P. Overath and H. Träuble,Biochemistry,12 (1973) 2625.

    Google Scholar 

  7. B. De Kruyff, P. W. M. van Dijck, R. W. Goldbach, R. A. Demel, and L. L. M. van Deenen,Biochim. Biophys. Acta,330 (1973) 269.

    Google Scholar 

  8. H. K. Kimelberg and D. Papahadjopoulos,J. Biol. Chem.,246 (1974) 1071.

    Google Scholar 

  9. D. Chapman,Quart. Rev. Biophys.,8 (1975) 185.

    Google Scholar 

  10. J. B. Chappell, M. Cohn, and G. D. Greville, in:Energy-Linked Functions of Mitochondria, B. Chance, Ed., pp. 219–231, Academic Press, New York and London (1963).

    Google Scholar 

  11. C. Rossi, A. Azzi, and G. F. Azzone,J. Biol. Chem.,242 (1967) 951.

    Google Scholar 

  12. K. C. Reed and F. L. Bygrave,Biochem. J.,142 (1974) 555.

    Google Scholar 

  13. A. Scarpa and A. Azzi,Biochim. Biophys. Acta,150 (1968) 473.

    Google Scholar 

  14. A. Scarpa and G. F. Azzone,J. Biol. Chem.,243 (1968) 5132.

    Google Scholar 

  15. W. E. Jacobus and G. P. Brierley,J. Biol. Chem.,244 (1969) 4995.

    Google Scholar 

  16. L. Mela,Biochemistry,8 (1969) 2481.

    Google Scholar 

  17. K. C. Reed and F. L. Bygrave,Biochem. J.,140 (1974) 143.

    Google Scholar 

  18. R. Colonna, S. Massari, and G. F. Azzone,Eur. J. Biochem.,34 (1973) 577.

    Google Scholar 

  19. K. E. Åkerman and N.-E. L. Saris,Biochim. Biophys. Acta,426 (1976) 624.

    Google Scholar 

  20. M. K. F. Wikström and N.-E. L. Saris,Eur. J. Biochem.,9 (1969) 160.

    Google Scholar 

  21. L. Mela and B. Chance,Biochemistry,7 (1968) 4059.

    Google Scholar 

  22. J. Saha, D. Papahadjopoulos, and C. E. Wenner,Biochim. Biophys. Acta,196 (1970) 10.

    Google Scholar 

  23. A. Huunan-Seppälä, M.D. thesis (1972) University of Helsinki, Finland, pp. 1–115.

    Google Scholar 

  24. S. Krasne, G. Eisenman, and G. Szabo,Science,174 (1971) 412.

    Google Scholar 

  25. G. G. Somjen and G. Kato,Brain Res.,9 (1968) 161.

    Google Scholar 

  26. L. Packer, K. Utsumi, and G. Mustafa,Arch. Biochem. Biophys.,117 (1966) 381.

    Google Scholar 

  27. C. W. Tabor,Biochem. Biophys. Res. Commun. 2 (1960) 117.

    Google Scholar 

  28. H. Tabor and C. W. Tabor,Pharmacol. Rev.,16 (1964) 245.

    Google Scholar 

  29. D. Papahadjopoulos,Biochim. Biophys. Acta,163 (1968) 240.

    Google Scholar 

  30. H. Träuble and H. Eibl,Proc. Natl. Acad. Sci. USA,71 (1974) 214.

    Google Scholar 

  31. D. A. Haydon and S. B. Hladky,Quart. Rev. Biophys,5 (1972) 187.

    Google Scholar 

  32. J. F. Tocanne, P. H. J. Th. Ververgaert, A. J. Verkleij, and L. L. M. van Deenen,Chem. Phys. Lipids,12 (1974) 201.

    Google Scholar 

  33. M. J. Selwyn, A. P. Dawson and S. J. Dunnet,FEBS Lett.,10 (1970) 1.

    Google Scholar 

  34. H. Rottenberg and S. Scarpa,Biochemistry,13 (1974) 4811.

    Google Scholar 

  35. P. Mitchell,Biol. Rev. (Camb.),41 (1966) 445.

    Google Scholar 

  36. K. E. O. Äkerman,J. Bioenerg. Biomembr.,9 (1977) 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åkerman, K.E.O. Effect of cations on the temperature sensitivity of Ca2+ transport in rat-liver mitochondria and safranine uptake by liposomes. J Bioenerg Biomembr 9, 141–149 (1977). https://doi.org/10.1007/BF00743277

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743277

Keywords

Navigation