Skip to main content
Log in

Electrical properties and structural transitions in the mitochondrion

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Charge carrier generation and transport in the mitochondrial lipoprotein system has been investigated by electrical conductivity, low frequency dielectric relaxation, and thermoelectric power. A parallel study was conducted on morphological/structural changes by DTA and NMR. The results obtained confirm the need to consider concurrently free charge carrier processes and polarization phenomena. All techniques show a “transition” at the same temperature. The steady state conductivity is correlated with main chain segmental reorientations of the phospholipid moiety below the transition and with an interfacial polarization process above it. The Seebeck coefficient provides a useful new aid to characterizing the charge carriers, confirming that they are electronic. The terminal cytochrome oxidase component was investigated separately but it largely reflected ionic impurities characteristic of the isolation process, so that the results were of no intrinsic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Eley, Semiconducting biological polymers in:Organic Semiconducting Polymers J. E. Katon, ed., Edward Arnold, London (1968) p. 259.

    Google Scholar 

  2. H. Ti Tien, Biology and semiconduction in:Solid State Physics and Chemistry P. F. Weller, ed., Dekker, New York (1973) Vol. 2, Chap. 14.

    Google Scholar 

  3. S. D. Bruck,Polymer 16 (1975) 25.

    Google Scholar 

  4. N. G. Ahmed, J. H. Calderwood, H. Frohlich, and C. W. Smith,Phys. Lett. 53A (1975) 129.

    Google Scholar 

  5. E. H. Halpern and A. A. Wolf,Proc. IEEE 64 (1976) 357.

    Google Scholar 

  6. F. W. Cope,Physiol. Chem Phys. 3 (1971) 403.

    Google Scholar 

  7. Electrically mediated growth mechanisms in living systems.Ann. N.Y. Acad. Sci. 238 (1974).

  8. H. J. Wintle,J. Noncrysl. Solids 15 (1974) 471.

    Google Scholar 

  9. L. Glasser,Chem. Rev. 75 (1975) 21.

    Google Scholar 

  10. R. E. Barker, Jr.,Pure Appl. Chem. 46 (1976) 157.

    Google Scholar 

  11. D. D. Eley and R. Pethig,Discuss. Faraday Soc. 51 (1971) 164.

    Google Scholar 

  12. R. E. Burgess,J. Polymer Sci. C: Polymer Symp. 17 (1967) 51.

    Google Scholar 

  13. D. D. Eley, R. J. Mayer, and R. Pethig,J. Bioenergetics 4 (1972) 389.

    Google Scholar 

  14. D. D. Eley, N. C. Lockhart, R. E. Parsons, and W. E. Porter, to be published.

  15. J. R. Fletcher,J. Phys. E: Sci. Instrum. 9 (1976) 481.

    Google Scholar 

  16. D. D. Eley, N. C. Lockhart, and C. N. Richardson, submitted toJ. Chem. Soc. Faraday Trans. (1978).

  17. J. E. Algie, in:Recent Advances in Fibre Science, F. Happey, ed., Academic Press, New York (in press) Vol. 1.

  18. P. J. Atkinson and R. J. Fleming,J. Phys. D: Appl. Phys. 9 (1976) 2027.

    Google Scholar 

  19. D. D. Eley, N. C. Lockhart, and C. N. Richardson,J. Phys. E: Sci. Instrum. 10 (1977) 1220.

    Google Scholar 

  20. D. J. Hazeldine, Ph.D. Thesis, University of Nottingham (1968).

  21. B. V. Hamon,Proc. IEE,99 (IV),Monogr.,27 (1952) 151.

  22. M. E. Baird,Rev. Mod. Phys. 40 (1968) 219.

    Google Scholar 

  23. A. L. Smith in:Methods in Enzymology R. W. Estabrook and M. E. Pullman, eds., Academic Press, New York (1967) Vol. X, p. 81.

    Google Scholar 

  24. S. J. Rooker, Ph.D. Thesis, University of Nottingham (1975).

  25. M. E. Baird, C. J. Creasey, and G. T. Goldsworthy,Polymer 12 (1971) 159.

    Google Scholar 

  26. F. W. Cope and K. D. Straub,Bull. Math. Biophys. 31 (1969) 761.

    Google Scholar 

  27. D. Chapman,Symp. Faraday Soc. 5 (1971) 163.

    Google Scholar 

  28. R. J. Mayer, University of Nottingham Medical School, personal communication.

  29. C. N. Richardson, Ph.D. Thesis, University of Nottingham (1976).

  30. J. Popingis, Y. Takahashi, and T. Wrzolkowa,Biochim. Biophys. Acta 256 (1972) 607.

    Google Scholar 

  31. V. A. Johnson and K. Lark-Horovitz,Phys. Rev. 92 (1953) 226.

    Google Scholar 

  32. I. G. Austin and N. F. Mott,Adv. Phys. 18 (1969) 41.

    Google Scholar 

  33. J. E. Algie and I. M. Stuart,Kolloid Z.-Z. Polymere 237 (1970) 302.

    Google Scholar 

  34. A. K. Jonscher,Colloid Polymer Sci. 253 (1975) 231.

    Google Scholar 

  35. A. M. North and J. C. Reid,Eur. Polymer J. 8 (1972) 1129.

    Google Scholar 

  36. N. G. McCrum, B. E. Reid, and G. Williams,Anelastic and Dielectric Effects in Polymeric Solids Wiley New York (1967).

    Google Scholar 

  37. J. E. Algie and R. A. Gamble,Kolloid Z.-Z. Polymere 251 (1973) 554.

    Google Scholar 

  38. D. Chatain, J. Guillet, C. Lacabanne, J. F. May and G. Seytre,J. Polymer Sci., Polymer Phys. 14 (1976) 211.

    Google Scholar 

  39. L. I. Boguslavskii and A. V. Vannikov,Biofizika 14 (1969) 421.

    Google Scholar 

  40. B. Chance, D. DeVault, and J. H. Parkes,Nature 215 (1967) 642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eley, D.D., Lockhart, N.C. & Richardson, C.N. Electrical properties and structural transitions in the mitochondrion. J Bioenerg Biomembr 9, 289–301 (1977). https://doi.org/10.1007/BF00743216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743216

Keywords

Navigation