Skip to main content
Log in

The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores ofRhodopseudomonas capsulata at different redox potentials

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

(1) Inhibition of cyclic phosphorylation in chromatophores ofRhodopseudomonas capsulata by antimycin A can be fully reversed by artificial redox mediators, provided the ambient redox potential is maintained around 200 mV. The redox mediator need not be a hydrogen carrier in its reduced form, N-methyl-phenazonium methosulfate and N,N,N′,N′-tetramethyl-p-phenylenediamine being equally effective. However, the mediator needs to be lipophilic. Endogenous cyclic phosphorylation is fastest around 130 mV. A shift to 200 mV can also be observed if high concentrations of artificial redox mediator are present in the absence of antimycin A. (2) ATPase activity ofRhodopseudomonas capsulata, in the light as well as in the dark, activated or not activated by inorganic phosphate, can also be stimulated by N-methylphenazonium methosulfate. This stimulation is highest at redox potentials between 60 to 80 mV and is sensitive to antimycin A. In this case N,N,N′,N′-tetramethyl-p-phenylenediamine is much less effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PES:

N-methyl-phenazonium ethosulfate

PMS:

N-methyl-phenazonium methosulfate

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

DAD:

diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine)

Bchl:

bacteriochlorophyll

FCCP:

carbonylcyanide-p-trifluoromethoxy-phenylhydrazone

E h :

redox potential

E m :

midpoint redox potential

References

  1. L. Smith and M. Baltscheffsky,J. Biol. Chem. 234 (1959) 1535.

    Google Scholar 

  2. D. M. Geller and F. Lipmann,J. Biol. Chem. 235 (1960) 2478.

    Google Scholar 

  3. J.-H. Klemme and H. G. Schlegel,Arch. Mikrobiol. 63 (1968) 154.

    Google Scholar 

  4. B. Arwidsson, M. Baltscheffsky, and H. Baltscheffsky,Biochim. Biophys. Acta 65 (1962) 429.

    Google Scholar 

  5. Z. Gromet-Elhanan and H. Gest,Archiv. Mikrobiol. 116 (1978) 29.

    Google Scholar 

  6. A. Trebst, E. Pistorius, and H. Baltscheffsky,Biochim. Biophys. Acta 143 (1967) 257.

    Google Scholar 

  7. A. Trebst,Ann. Rev. Plant Physiol. 25 (1974) 423.

    Google Scholar 

  8. A. Trebst,Z. Naturforsch. 31c (1976) 152.

    Google Scholar 

  9. S. K. Bose and H. Gest,Proc. Natl. Acad. Sci. 49 (1963) 337.

    Google Scholar 

  10. T. Horio and M. D. Kamen,Biochemistry 1 (1962) 144.

    Google Scholar 

  11. M. A. Cusanovich, R. G. Bartsch, and M. D. Kamen,Biochim. Biophys. Acta 153 (1968) 418.

    Google Scholar 

  12. S. A. Culbert-Runquist, R. M. Hadsell, and P. A. Loach,Biochemistry 12 (1973) 3508.

    Google Scholar 

  13. M. K. F. Wikström and A. M. Lambowitz,FEBS Lett. 401 (1974) 49.

    Google Scholar 

  14. T. Horio, Y. Horiuti, N. Yamamoto, and K. Nishikawa, inMethods in Enzymology, Vol. 24 (A. San Pietro, ed.), Academic Press, New York (1972), pp. 96–103.

    Google Scholar 

  15. K. M. Petty, J. B. Jackson, and P. L. Dutton,FEBS Lett. 84 (1977) 299.

    Google Scholar 

  16. P. Mitchell, G.R.L., 78, 1–6 (1978), grants from Glynn Research Labs. Bodmin, Cornwall, U.K.

    Google Scholar 

  17. R. Casadio, A. Baccarini-Melandri, and B. A. Melandri,FEBS Lett. 87 (1978) 323.

    Google Scholar 

  18. A. Baccarini-Melandri and B. A. Melandri,Methods in Enzymology, Vol. 23 (A. San Pietro, ed.), Academic Press, New York (1971), pp. 556–561.

    Google Scholar 

  19. M. Avron,Biochim. Biophys. Acta 40 (1960) 257.

    Google Scholar 

  20. B. A. Melandri, A. Baccarini-Melandri, and E. Fabbri,Biochim. Biophys. Acta 275 (1972) 383.

    Google Scholar 

  21. T. Horio, K. Nishikawa, and Y. Horiuti, inMethods in Enzymology, Vol. 23 (A. San Pietro, ed.), Academic Press, New York (1971), p. 650.

    Google Scholar 

  22. R. K. Clayton,Biochim. Biophys. Acta 75 (1973) 312.

    Google Scholar 

  23. W. M. Clark,Oxidation Reduction Potentials of Organic Systems, Williams and Wilkins, Baltimore (1960).

    Google Scholar 

  24. G. Hauska, S. Reimer, and A. Trebst,Biochim. Biophys. Acta 357 (1974) 1.

    Google Scholar 

  25. G. Hauska, W. Oettmeier, S. Reimer, and A. Trebst,Z. Naturforsch. 30c (1975) 37.

    Google Scholar 

  26. G. Hauska, A. Trebst, and W. Draber,Biochim. Biophys. Acta 305 (1973) 632.

    Google Scholar 

  27. A. T. Jagendorf and M. Avron,J. Biol. Chem. 231 (1958) 277.

    Google Scholar 

  28. A. Baccarini-Melandri, E. Fabbri, and B. A. Melandri,Biochim. Biophys. Acta 376 (1975) 82.

    Google Scholar 

  29. A. Baccarini-Melandri., E. Fabbri, E. Firstater, and B. A. Melandri,Biochim. Biophys. Acta 376 (1975) 72.

    Google Scholar 

  30. G. D. Webster and J. B. Jackson,Biochim. Biophys. Acta 503 (1978) 135.

    Google Scholar 

  31. P. L. Dutton and D. F. Wilson,Biochim. Biophys. Acta 346 (1974) 165.

    Google Scholar 

  32. E. H. Evans and A. R. Crofts,Biochim. Biophys. Acta 357 (1974) 89.

    Google Scholar 

  33. R. C. Prince and P. L. Dutton,Biochem. Biophys. Acta 462 (1977) 731.

    Google Scholar 

  34. A. R. Crofts and J. Bowyer, inThe Proton and Calcium Pumps (G. R. Azzone, ed.), Elsevier North-Holland, Amsterdam (1978), pp. 55–62.

    Google Scholar 

  35. J. B. Jackson and P. L. Dutton,Biochem. Biophys. Acta 325 (1973) 102.

    Google Scholar 

  36. A. R. Crofts, D. Browther, and G. V. Tierney, inElectron Transfer Chains and Phosphorylation (E. Quagliarello et al., eds.), North-Holland, Amsterdam, (1975), pp. 233–241.

    Google Scholar 

  37. R. J. Cogdell, J. B. Jackson, and A. R. Crofts,J. Bioenergetics 4 (1973) 211.

    Google Scholar 

  38. K. M. Petty and P. L. Dutton,Arch. Biochem. Biophys. 172 (1976) 335.

    Google Scholar 

  39. A. Trebst and S. Reimer,Z. Naturforsch 28c (1973) 710.

    Google Scholar 

  40. A. Baccarini-Melandri and B. A. Melandri,FEBS Lett. 80 (1977) 459.

    Google Scholar 

  41. B. A. Melandri and A. Baccarini-Melandri,J. Bioenergetics 8 (1976) 109.

    Google Scholar 

  42. P. A. Edwards and J. B. Jackson,Eur. J. Biochem. 62 (1976) 7.

    Google Scholar 

  43. G. D. Webster, P. A. Edwards, and J. B. Jackson,FEBS Lett. 76 (1977) 29.

    Google Scholar 

  44. P. Mitchell,J. Theor. Biol. 62 (1976) 327.

    Google Scholar 

  45. M. K. F. Wikström and J. A. Berden,Biochim. Biophys. Acta 283 (1972) 403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccarini-Melandri, A., Melandri, B.A. & Hauska, G. The stimulation of photophosphorylation and ATPase by artificial redox mediators in chromatophores ofRhodopseudomonas capsulata at different redox potentials. J Bioenerg Biomembr 11, 1–16 (1979). https://doi.org/10.1007/BF00743157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743157

Keywords

Navigation