Skip to main content
Log in

Chromophorylation (in Escherichia coli) of allophycocyanin B subunits from far-red light acclimated Chroococcidiopsis thermalis sp. PCC7203

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cyanobacterial phycobilisomes funnel the harvested light energy to the reaction centers via two terminal emitters, allophycocyanin B and the core–membrane linker. ApcD is the a-subunit of allophycocyanin B responsible for its red-shifted absorbance (?max 665 nm). Far-red photo-acclimated cyanobacteria contain certain allophycocyanins that show even further red-shifted absorbances (?max > 700 nm). We studied the chromophorylation of the three far-red induced ApcD subunits ApcD2, ApcD3 and ApcD4 from Chroococcidiopsis thermalis sp. PCC7203 during the expression in E. coli. The complex behavior emphasizes that a variety of factors contribute to the spectral red-shift. Only ApcD2 bound phycocyanobilin covalently at the canonical position C81, while ApcD3 and ApcD4 gave only traces of stable products. The product of ApcD2 was, however, heterogeneous. The major fraction had a broad absorption around 560 nm and double-peaked fluorescence at 615 and 670 nm. A minor fraction was similar to the product of conventional ApcD, with maximal absorbance around 610 nm and fluorescence around 640 nm. The heterogeneity was lost in C65 and C132 variants; in these variants only the conventional product was formed. With ApcD4, a red-shifted product carrying non-covalently bound phycocyanobilin could be detected in the supernatant after cell lysis. While this chromophore was lost during purification, it could be stabilized by co-assembly with a far-red light-induced ß-subunit, ApcB3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Glazer, Phycobilisome–A macromolecular complex optimized for light energy transfer, Biochim. Biophys. Acta, 1984, 768, 29–51.

    Article  CAS  Google Scholar 

  2. E. Gantt, B. Grabowski and F. X. Cunningham, in Light-harvesting antennas in photosynthesis, ed. B. Green and W. Parson, Kluwer, Dordrecht, 2003, pp. 307–322.

  3. W. A. Sidler, in The molecular biology of cyanobacteria, ed. D. A. Bryant, Kluwer, Dordrecht, 1994, pp. 139–216.

  4. A. Ducret, S. A. Müller, K. N. Goldie, A. Hefti, W. A. Sidler, H. Zuber and A. Engel, Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena, sp. PCC 7120, J. Mol. Biol., 1998, 278, 369–388.

    Article  CAS  PubMed  Google Scholar 

  5. H. Liu, H. Zhang, D. M. Niedzwiedzki, M. Prado, G. He, M. L. Gross and R. E. Blankenship, Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria, Science, 2013, 342, 1104–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Chang, X. Liu, Y. Li, C. C. Liu, F. Yang, J. Zhao and S. F. Sui, Structural organization of an intact phycobilisome and its association with photosystem II, Cell Res., 2015, 25, 726–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. F. Gan, G. Shen and D. A. Bryant, Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria, Life, 2015, 5, 4–24.

    Article  CAS  Google Scholar 

  8. F. Gan, S. Zhang, N. C. Rockwell, S. S. Martin, J. C. Lagarias, D. A. Bryant, Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light, Science, 2014, 345, 1312–1317.

    Article  CAS  PubMed  Google Scholar 

  9. M. Chen, M. Schliep, R. D. Willows, Z. L. Cai, B. A. Neilan and H. Scheer, A red-shifted chlorophyll, Science, 2010, 329, 1318–1319.

    Article  CAS  PubMed  Google Scholar 

  10. Y. Li, Y. Lin, C. J. Garvey, D. Birch, R. W. Corkery, P. C. Loughlin, H. Scheer, R. D. Willows and M. Chen, Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris, Biochim. Biophys. Acta, 2015, 1857, 107–114.

    Article  PubMed  CAS  Google Scholar 

  11. E. A. Rodriguez, G. N. Tran, L. A. Gross, J. L. Crisp, X. Shu, J. Y. Lin and R. Y. Tsien, A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein, Nat. Methods, 2016, 13, 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. M. Shcherbakova, M. Baloban and V. V. Verkhusha, Near-infrared fluorescent proteins engineered from bacterial phytochromes, Curr. Opin. Chem. Biol., 2015, 27, 52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. X. L. Zeng, K. Tang, N. Zhou, M. Zhou, H. J. Hou, H. Scheer, K. H. Zhao and D. Noy, Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains, J. Am. Chem. Soc., 2013, 135, 13479–13487.

    Article  CAS  PubMed  Google Scholar 

  14. D. Miao, W. L. Ding, B. Q. Zhao, L. Lu, Q. Z. Xu, H. Scheer and K. H. Zhao, Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335, Biochim. Biophys. Acta, 2016, 1857, 688–694.

    Article  CAS  PubMed  Google Scholar 

  15. Q. Z. Xu, J. X. Han, Q. Y. Tang, W. L. Ding, D. Miao, M. Zhou, H. Scheer and K. H. Zhao, Far-red light photoacclimation: Chromophorylation of FR induced alpha- and beta-subunits of allophycocyanin from Chroococcidiopsis thermalis sp. PCC7203, Biochim. Biophys. Acta, 2016, 1857, 1607–1616.

    Article  CAS  PubMed  Google Scholar 

  16. J. Sambrook, E. Fritsch and T. Maniatis, Molecular cloning: a laboratory manual, Cold Spring Harbour Laboratory Press, New York, 2nd edn, 1989.

    Google Scholar 

  17. K. H. Zhao, P. Su, J. Li, J. M. Tu, M. Zhou, C. Bubenzer and H. Scheer, Chromophore attachment to phycobiliprotein ß-subunits: phycocyanobilin:cysteine-ß84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120, J. Biol. Chem., 2006, 281, 8573–8581.

    Article  CAS  PubMed  Google Scholar 

  18. K. H. Zhao, P. Su, J. M. Tu, X. Wang, H. Liu, M. Plöscher, L. Eichacker, B. Yang, M. Zhou and H. Scheer, Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 14300–14305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Zhang, X. J. Wu, Z. B. Wang, Y. Chen, X. Wang, M. Zhou, H. Scheer and K. H. Zhao, Fused-gene approach to photoswitchable and fluorescent biliproteins, Angew. Chem., Int. Ed., 2010, 49, 5456–5458.

    Article  CAS  Google Scholar 

  20. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  21. U. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  22. T. Berkelman and J. C. Lagarias, Visualization of bilin-linked peptides and proteins in polyacrylamide gels, Anal. Biochem., 1986, 156, 194–201.

    Article  CAS  PubMed  Google Scholar 

  23. P. H. Brown and P. Schuck, Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation, Biophys. J., 2006, 90, 4651–4661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. N. Glazer and S. Fang, Chromophore content of blue-green algal phycobiliproteins, J. Biol. Chem., 1973, 248, 659–662.

    Article  CAS  PubMed  Google Scholar 

  25. Y. A. Cai, J. T. Murphy, G. J. Wedemayer and A. N. Glazer, Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains, Anal. Biochem., 2001, 290, 186–204.

    Article  CAS  PubMed  Google Scholar 

  26. R. MacColl, Allophycocyanin and energy transfer, Biochim. Biophys. Acta, 2004, 1657, 73–81.

    Article  CAS  PubMed  Google Scholar 

  27. A. Biswas, Y. M. Vasquez, T. M. Dragomani, M. L. Kronfel, S. R. Williams, R. M. Alvey, D. A. Bryant and W. M. Schluchter, Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002, Appl. Environ. Microbiol., 2010, 76, 2729–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. Tang, W.-L. Ding, A. Höppner, C. Zhao, L. Zhang, Y. Hontani, J. T. M. Kennis, W. Gärtner, H. Scheer, M. Zhou and K.-H. Zhao, The terminal phycobilisome emitter, LCM: a light-harvesting pigment with a phytochrome chromophore, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 15880–15885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. K. H. Zhao and H. Scheer, Type I and type II reversible photochemistry of phycoerythrocyanin a-subunit from Mastigocladus laminosus, both involve Z, E isomerization of phycoviolobilin chromophore and are controlled by sulfhydryls in apoprotein, Biochim. Biophys. Acta, Bioenerg., 1995, 1228, 244–253.

    Article  Google Scholar 

  30. K. H. Zhao, R. Haessner, E. Cmiel and H. Scheer, Type I reversible of phycoerythrocyanin involves Z/E-isomerization of a-84 phycoviolobilin chromophore, Biochim. Biophys. Acta, 1995, 1228, 235–243.

    Article  Google Scholar 

  31. N. C. Rockwell, S. S. Martin, A. G. Gulevich and J. C. Lagarias, Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily, Biochemistry, 2012, 51, 1449–1463.

    Article  CAS  PubMed  Google Scholar 

  32. Q. Ma, H. H. Hua, Y. Chen, B. B. Liu, A. L. Kramer, H. Scheer, K. H. Zhao and M. Zhou, A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc, sp. PCC7120, FEBS J., 2012, 279, 4095–4108.

    Article  CAS  PubMed  Google Scholar 

  33. M. Ikeuchi and T. Ishizuka, Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria, Photochem. Photobiol. Sci., 2008, 7, 1159–1167.

    Article  CAS  PubMed  Google Scholar 

  34. P. P. Peng, L. L. Dong, Y. F. Sun, X. L. Zeng, W. L. Ding, H. Scheer, X. Yang and K. H. Zhao, The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2014, 70, 2558–2569.

    Article  CAS  Google Scholar 

  35. A. Marx and N. Adir, Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly, Biochim. Biophys. Acta, 2013, 1827, 311–318.

    Article  CAS  PubMed  Google Scholar 

  36. J. Y. Liu, T. Jiang, J. P. Zhang and D. C. Liang, Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A resolution, J. Biol. Chem., 1999, 274, 16945–16952.

    Article  CAS  PubMed  Google Scholar 

  37. K. Brejc, R. Ficner, R. Huber and S. Steinbacher, Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution, J. Mol. Biol., 1995, 249, 424–440.

    Article  CAS  PubMed  Google Scholar 

  38. W. Reuter, G. Wiegand, R. Huber and M. E. Than, Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 1363–1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Y. Ho, F. Gan, G. Shen and D. A. Bryant, Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light, Photosynth. Res., 2017, 131, 187–202.

    Article  CAS  PubMed  Google Scholar 

  40. N. Tandeau de Marsac and G. Cohen-bazire, Molecular composition of cyanobacterial phycobilisomes, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 1635–1639.

    Article  Google Scholar 

  41. A. N. Glazer, Adaptive variations in Phycobilisome structure, Adv. Mol. Cell Biol., 1994, 10, 119–149.

    Article  CAS  Google Scholar 

  42. N. C. Rockwell, D. Duanmu, S. S. Martin, C. Bachy, D. C. Price, D. Bhattacharya, A. Z. Worden and J. C. Lagarias, Eukaryotic algal phytochromes span the visible spectrum, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 3871–3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Six, J. C. Thomas, L. Garczarek, M. Ostrowski, A. Dufresne, N. Blot, D. J. Scanlan and F. Partensky, Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study, Genome Biol., 2007, 8, R259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. A. Shukla, A. Biswas, N. Blot, F. Partensky, J. A. Karty, L. A. Hammad, L. Garczarek, A. Gutu, W. M. Schluchter and D. M. Kehoe, Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 20136–20141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. N. Blot, X. J. Wu, J. C. Thomas, J. Zhang, L. Garczarek, S. Bohm, J. M. Tu, M. Zhou, M. Plöscher, L. Eichacker, F. Partensky, H. Scheer and K. H. Zhao, Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase, J. Biol. Chem., 2009, 284, 9290–9298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K. H. Zhao, M. G. Deng, M. Zheng, M. Zhou, A. Parbel, M. Storf, M. Meyer, B. Strohmann and H. Scheer, Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon, FEBS Lett., 2000, 469, 9–13.

    Article  CAS  PubMed  Google Scholar 

  47. R. M. Alvey, A. Biswas, W. M. Schluchter and D. A. Bryant, Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli, Biochemistry, 2011, 50, 4890–4902.

    Article  CAS  PubMed  Google Scholar 

  48. C. D. Fairchild and A. N. Glazer, Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase, J. Biol. Chem., 1994, 269, 8686–8694.

    Article  CAS  PubMed  Google Scholar 

  49. M. Storf, A. Parbel, M. Meyer, B. Strohmann, H. Scheer, M. G. Deng, M. Zheng, M. Zhou and K. H. Zhao, Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-cys-a84-phycoviolobilin chromophore of phycoerythrocyanin, Biochemistry, 2001, 40, 12444–12456.

    Article  CAS  PubMed  Google Scholar 

  50. A. J. Tooley, Y. A. Cai and A. N. Glazer, Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-a subunit in a heterologous host, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 10560–10565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Scheer and K. H. Zhao, Biliprotein maturation: the chromophore attachment, Mol. Microbiol., 2008, 68, 263–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. W. M. Schluchter, G. Shen, R. M. Alvey, A. Biswas, N. A. Saunee, S. R. Williams, C. A. Mille and D. A. Bryant, Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification, Adv. Exp. Med. Biol., 2010, 675, 211–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c7pp00066a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QZ., Tang, QY., Han, JX. et al. Chromophorylation (in Escherichia coli) of allophycocyanin B subunits from far-red light acclimated Chroococcidiopsis thermalis sp. PCC7203. Photochem Photobiol Sci 16, 1153–1161 (2017). https://doi.org/10.1039/c7pp00066a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00066a

Navigation