Skip to main content
Log in

Ultrastructure of the Squid Axon Membrane as Revealed by Freeze-Fracture Electron Microscopy

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The structure of the axolemma of the squid giant axon was studied by freeze-fracture electron microscopy.

  2. 2.

    Three types of preparations were examined: intact axons, axons with their Schwann cell sheaths stripped off prior to freezing, and axons with their Schwann cell sheaths chemically detached but not mechanically removed.

  3. 3.

    Because of a problem of cross-fracturing, the first two types of preparations revealed very few membrane faces of the axolemma. This cross-fracturing problem, however, was eliminated when we used a complementary replication method to fracture the third type of preparation.

  4. 4.

    We found that the E-face of the axon membrane was smooth relative to the P-face, which showed many prominent intramembrane particles (IMP). The diameters of the typical IMP range from 6 to 15 nm.

  5. 5.

    The P-face of the adjacent Schwann cells also showed many large IMP. The sizes and heights of the Schwann-cell IMP, however, appear to be more homogeneous than the P-face axolemma.

  6. 6.

    On the basis of existing physiological and biochemical information about the estimated size and density of the so-called sodium-channel proteins, we suspect that some of the IMP at the P-face of the axolemma, especially those with diameters between 9 and 11 nm, may be associated with the intramembrane component of the sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew, W. S., Moore, A. C., Levinson, S. R., and Raftery, M. A. (1980). Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax ofElectrophorus electricus.Biochem. Biophys. Res. Commun. 92860–866.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., and Shaw, T. I. (1962). Replacement of the axoplasm of giant nerve fibers with artificial solutions.J. Physiol. (London)164330–354.

    CAS  Google Scholar 

  • Barchi, R. L., Cohen, S. A., and Murphy, L. E. (1980). Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channels.Proc. Natl. Acad. Sci. (USA)771306–1310.

    Article  CAS  Google Scholar 

  • Catterall, W. A., Morrow, C. S., and Hartshorne, R. P. (1979). Neurotoxins binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent solubilized brain membranes.J. Biol. Chem. 25411379–11387.

    PubMed  CAS  Google Scholar 

  • Chang, D. C. (1983). Ion-selectivity and “gating” properties of the current conduction pathways in squid axon: The view of a membrane-cortex model. InStructure and Function in Excitable Cells (Chang, D., Tasaki, I., Adelman, W. J., Jr. and Leuchtag, H. R., Eds.), Plenum Press, New York, pp. 227–254.

    Chapter  Google Scholar 

  • Ellisman, M. H. (1976). The distribution of membrane molecular specializations characteristic of the node of Ranvier is not dependent upon myelination.Soc. Neurosci. Abstr. 2410.

    Google Scholar 

  • Ellisman, M. H., Lindsey, J. D., Wiley-Livingston, C., and Levinson, S. R. (1983a). Differentiation of axonal membrane systems, the axolemma, and the axoplasmic matrix. InStructure and Function in Excitable Cells (Chang, D., Tasaki, I., Adelman, W. J., Jr., and Leuchtag, H. R., Eds.), Plenum Press, New York, pp. 3–24.

    Chapter  Google Scholar 

  • Ellisman, M. H., Miller, J. A., Agnew, W. S., Deerinck, T. J., Leong, D. B., Rosenberg, R. L., and Tomiko, S. A. (1983b). Molecular morphology of the tetrodotoxin binding sodium channel protein fromElectrophorus electricus in solubilized and reconstituted vesicle preparation.Soc. Neurosci. Abstr. 920.

    Google Scholar 

  • Geren, B. B., and Schmitt, F. O. (1954). The structure of the Schwann cell and its relation to the axon in certain invertebrate nerve fibers.Proc. Natl. Acad. Sci. (USA)40863–870.

    Article  CAS  Google Scholar 

  • Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L., and Evans, L. (1979). Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release.J. Cell Biol. 81275–300.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (1984).Ionic Channels of Excitable Membranes, Sinauer Assoc., Sunderland, Mass.

    Google Scholar 

  • Hodge, A. J., and Adelman, W. J., Jr. (1980). The neuroplasmic network inLoligo andHermissenda neurons.J. Ultrastruct. Res. 70220–241.

    Article  PubMed  CAS  Google Scholar 

  • Hodge, A. J., and Adelman, W. J., Jr. (1983). The neuroplasmic lattice: Structural characteristics in vertebrate and invertebrate axons. InStructure and Function in Excitable Cells (Chang, D., Tasaki, I., Adelman, W. J., Jr., and Leuchtag, H. R., Eds.), Plenum Press, New York, pp. 75–111.

    Chapter  Google Scholar 

  • Kristol, C., Akert, K., Sandri, C., Wyss, U. S., Bennett, M. V. L., and Moor, H. (1977). The Ranvier nodes in the neurogenic electric organ of the knife fishSternarchus: A freeze-etching study on the distribution of the membrane-associated particles.Brain Res. 125197–212.

    Article  PubMed  CAS  Google Scholar 

  • Kristol, C., Sandri, C., and Akert, K. (1978). Intramembranous particles at the nodes of Ranvier of the cat spinal cord: A morphometric study.Brain Res. 142391–400.

    Article  PubMed  CAS  Google Scholar 

  • Lazdunski, M., Balerna, M., Chicheportiche, R., Fosset, M., Jacques, Y., Lombet, A., Romey, G., and Schweitz, H. (1979). Interactions of the neurotoxins with the selectivity filter and the gating system of the sodium channel. InNeurotoxins: Tools in Neurobiology (Cecarelli, B., and Clementi, F., Eds.), Raven Press, New York, pp. 353–361.

    Google Scholar 

  • Levinson, S. R., and Meves, H. (1975). The binding of tritiated tetrodotoxin to squid giant axons.Phil. Trans. Roy. Soc. B. 270349–352.

    Article  CAS  Google Scholar 

  • Livingston, R. B., Pfenninger, K., Moor, H., and Akert, K. (1973). Specialized paranodal and inter-paranodal glial-axonal junctions in the peripheral central nervous system: A freeze-etching study.Brain Res. 581–24.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J., and Izzard, C. S. (1969). Spatial patterns of thread-like elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealeii L.) as disclosed by differential interference microscopy and by electron microscopy.J. Cell Biol. 43456–479.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J., and Tasaki, I. (1978). Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo pealeii L.) and its possible role in excitability.J. Cell Biol. 78597–621.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals, J., Tasaki, I., Terakawa, S., and Clapin, D. F. (1981). Removal of the Schwann sheath from the giant axon of the squid: An electron microscopic study of the desheathed axolemma and of associated axoplasmic structures.Cell Tissue Res. 2211–15.

    Article  PubMed  CAS  Google Scholar 

  • Mohraz, M., Rinder, C. A., Simpson, M. V., and Smith, P. R. (1983). The structure of (Na+,K+)-APTase as revealed by electron microscopy.J. Cell Biol. 97:116a.

    Google Scholar 

  • Nicaise, G., Hernandez-Nicaise, M. L., and Malaval, L. (1982). Electron microscopy and X-ray microanalysis of calcium binding sites on the plasma membrane ofBeroe giant smooth muscle fiber.J. Cell Sci. 55353–364.

    PubMed  CAS  Google Scholar 

  • Peracchia, C. (1974). Excitable membrane ultrastructure.J. Cell Biol. 61107–122.

    Article  PubMed  CAS  Google Scholar 

  • Pumplin, D. W., and Fambrough, D. M. (1983). (Na+ + K+)-ATPase correlated with a major group of intramembrane particles in freeze-fracture replicas of cultured chick myotubes.J. Cell Biol. 971214–1225.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth, J. (1976). Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.J. Neurocytol. 5731–745.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbluth, J. (1981). Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerves. InDemyelinating Disease: Basic and Clinical Electrophysiology (Waxman, S. G., and Ritchie, J. M., Eds.), Raven Press, New York, pp. 391–418.

    Google Scholar 

  • Rosenbluth, J. (1983). Structure of the node of Ranvier. InStructures and Function in Excitable Cells (Chang, D., Tasaki, I., Adelman, W. J., Jr., and Leuchtag, H. R., Eds.), Plenum Press, New York, pp. 25–52.

    Chapter  Google Scholar 

  • Schnapp, B., Peracchia, C., and Mugnaini, E. (1976). The paranodal axo-glial junction in the central nervous system studied with thin sections and freeze-fracture.Neuroscience 1181–190.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, J. M., Nabi, N., Sabatini, D. D., and Morimoto, T. (1983). Membrane orientation of the Na,K-ATPase.J. Cell Biol. 97:116a.

    Google Scholar 

  • Villegas, R., Villegas, G. M., Suerez-Mata, Z., and Rodriguez, F. (1983). Reconstitution of nerve membrane sodium channels: Channel proteins. InStructure and Function in Excitable Cells (Chang, D., Tasaki, I., Adelman, W. J., Jr., and Leuchtag, H. R., Eds.), Plenum Press, New York, pp. 453–470.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D.C., Tasaki, I. Ultrastructure of the Squid Axon Membrane as Revealed by Freeze-Fracture Electron Microscopy. Cell Mol Neurobiol 6, 43–53 (1986). https://doi.org/10.1007/BF00742975

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00742975

Key words

Navigation