Skip to main content
Log in

Fluorescence evidence for cholesterol regular distribution in phosphatidylcholine and in sphingomyelin lipid bilayers

  • Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Our previous studies indicated that sterols (including cholesterol and dehydroergosterol) can be regularly distributed into hexagonal superlattices in the plane of liquid-crystalline phosphatidylcholine bilayers. It was suggested that regular and irregular regions coexist in the membrane. In the present study, we report supporting evidence for our sterol regular distribution model. We have examined the fractional concentration dependencies of dehydroergosterol (a naturally occurring cholesterol analogue) fluorescence intensity and lifetime in various phosphatidylcholine and sphingomyelin bilayers. Fluorescence intensity and lifetime dips have been observed at specific sterol mole fractions. At those mole fractions, the acrylamide quenching rate constant of dehydroergosterol fluorescence reaches a local maximum. Those mole fractions match the critical sterol mole fractions at which sterol molecules are expected to be regularly distributed into hexagonal superlattices. The results support the idea that the sterols in the regular region are embedded in the bilayer less deep than those in the irregular regions. We have also examined the fractional cholesterol concentration dependencies of diphenylhexatriene (DPH) fluorescence intensity, lifetime, and polarization in DMPC vesicles. DPH fluorescence intensity and polarization also exhibit distinct dips and peaks, respectively, at critical sterol mole fractions for hexagonal superlattices. However, DPH lifetime changes little with sterol mole fraction. As a comparison, the fluorescence properties of DHE and DPH behave differently in response to the formation of sterol regular distribution. Furthermore, finding evidence for sterol regular distribution in both phosphatidylcholine and sphingomyelin membranes raises the possibility that sterol regular distribution may occur within phospholipid/cholesterol enriched domains of real biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Lentz, D. A. Barrow, and M. Hoechli (1980)Biochemistry 19, 1943–1954.

    Google Scholar 

  2. B. Snyder and E. Freire (1980)Proc. Natl. Acad. Sci. USA 77, 4055–4059.

    Google Scholar 

  3. J. Rogers, A. G. Lee, and D. D. Wilton (1979)Biochim. Biophys. Acta 552, 23–37.

    Google Scholar 

  4. P. A. Hyslop, B. Morel, and R. D. Sauerheber (1990)Biochemistry 29, 1025–1038.

    Google Scholar 

  5. P. H. Von Dreele (1978)Biochemistry 17, 3939–3943.

    Google Scholar 

  6. I. P. Sugar, J. Zeng, and P. L.-G. Chong (1991)J. Phys. Chem. 95, 7524–7534.

    Google Scholar 

  7. S. Mabrey, P. L. Mateo, and J. M. Sturtevant (1978)Biochemistry 17, 2464–2468.

    Google Scholar 

  8. P. L.-G. Chong (1994)Proc. Natl. Acad. Sci. USA 91, 10069–10073.

    Google Scholar 

  9. J. A. Virtanen, P. Somerharju, and P. K. J. Kinnunen (1988)J. Mol. Electr. 4, 233–236.

    Google Scholar 

  10. D. Tang and P. L.-G. Chong (1992)Biophys. J. 63, 903–910.

    Google Scholar 

  11. P. L.-G. Chong, D. Tang, and I. P. Sugar (1994)Biophys. J. 66, 2029–2038.

    Google Scholar 

  12. I. P. Sugar, D. Tang, and P. L.-G. Chong (1994)J. Phys. Chem. 98, 7201–7210.

    Google Scholar 

  13. G. R. Bartlett (1959)J. Biol. Chem. 234, 466–468.

    Google Scholar 

  14. P. L.-G. Chong (1996) in J. L. Markley, D. B. Northrop, and C. A. Royer (Eds.),High Pressure Effects in Molecular Biophysics and Enzymology, Proceedings of the 1994 Steenbock Symposium, Oxford University Press, New York, pp. 298–313.

    Google Scholar 

  15. E. Alvarez, V. Ruiz-Gutierrez, C. S. Maria, and A. Machado (1993)Mech. Age. Dev. 71, 1–12.

    Google Scholar 

  16. E. Quintao, S. M. Grundy, and E. H. Ahrens (1971)J. Lipid Res. 12, 233–247.

    Google Scholar 

  17. F. Schroeder, Y. Barenholz, E. Gratton, and T. E. Thompson (1987)Biochemistry 26, 2441–2448.

    Google Scholar 

  18. D. L. Melchior, F. J. Scavitto, and J. M. Steim (1980)Biochemistry 19, 4828–4834.

    Google Scholar 

  19. T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton (1995)Biophys. J. 68, 1895–1902.

    Google Scholar 

  20. J. Virtanen, M. Ruonala, M. Vauhkonen, and P. Somerharju (1995)Biochemistry 34, 11568–11581.

    Google Scholar 

  21. G. Puchwein, T. Pfeffer, and E. J. M. Helmreich (1974)J. Biol. Chem. 249, 3232–3240.

    Google Scholar 

  22. H. M'Zali, and F. Giraud (1986)Biochem. J. 234, 13–20.

    Google Scholar 

  23. P. L.-G. Chong and A. R. Cossins (1984)Biochim. Biophys. Acta 772, 197–201.

    Google Scholar 

  24. A. Chabanel, M. Flamm, K. L. P. Sung, M. M. Lee, D. Schachter, and S. Chien (1983)Biophys. J. 44, 171–176.

    Google Scholar 

  25. J. M. Smaby, V. S. Kulkarni, M. Momsen, and R. E. Brown (1996)Biophys. J. 70, 868–877.

    Google Scholar 

  26. C. R. Matteo, A. U. Acuna, and J.-C. Bronchon (1995)Biophys. J. 68, 978–987.

    Google Scholar 

  27. D. Toprygin and L. Brand (1995)J. Fluoresc. 5, 39–50.

    Google Scholar 

  28. E. Gratton and T. Parasassi (1995)J. Fluoresc. 5, 51–57.

    Google Scholar 

  29. L. R. De Young and K. A. Dill (1990)J. Phys. Chem. 94, 801–809.

    Google Scholar 

  30. D. Tang, B. W. van der Meer, and S.-Y. S. Chen (1995)Biophys. J. 68, 1944–1951.

    Google Scholar 

  31. T. P. W. McMullen and R. N. McElhaney (1995)Biochim. Biophys. Acta 1234, 90–98.

    Google Scholar 

  32. J. M. Smaby, M. Momsen, V. S. Kulkami, and R. E. Brown (1996)Biochemistry 35, 5696–5704.

    Google Scholar 

  33. P. L.-G. Chong, M. M. Wang, F. Liu, K. Truong, A. Golsorkhi, I. P. Sugar, and R. E. Brown (1996)Proc. Fluoresc. Detect. IV, SPIE 2705, 143–154.

    Google Scholar 

  34. M. Straume and B. J. Litman (1987)Biochemistry 26, 5121–5126.

    Google Scholar 

  35. C. Ho and D. Stubbs (1992)Biophys. J. 63, 897–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, P.LG., Liu, F., Wang, M.M. et al. Fluorescence evidence for cholesterol regular distribution in phosphatidylcholine and in sphingomyelin lipid bilayers. J Fluoresc 6, 221–230 (1996). https://doi.org/10.1007/BF00732825

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732825

Key words

Navigation