Skip to main content
Log in

Paramagnetic Meissner effect of high-temperature granular superconductors: Interpretation by anisotropic and isotropic models

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The field-cooled magnetization of high-T c superconducting ceramics measured in low magnetic fields exhibits the paramagnetic Meissner effect (PME), i.e., the diamagnetic signal initially increases with decrease in temperature but reaches a maximum at temperatureT d and later decreases with decrease in temperature. Even in some samples the signal is ultimately able to transform inversely into a paramagnetic regime once the sample is cooled below a temperatureT p as long as the applied field is sufficiently small. This PME has been observed in various high-T c cuprates and is explained by disparate aspects. An anisotropic model, in which the granular superconductors are assumed to be ideally anisotropic, was first alternatively proposed in the present work so as to theoretically account for this effect. On the other hand, an isotropic model, suitable for granular superconductors with randomly oriented grains, was proposed to deal with the samples prepared by a conventional solid-state reaction method. The anomalous magnetization behavior in the present model was demonstrated to be the superposition of the diamagnetic signal, which occurs as a result of the intragranular shielding currents, over the paramagnetic one due to the induction of the intergranular component induced by these currents where the intergranular one behaved as the efective pinning centers. The PME was demonstrated by this model to exist parasitically in granular superconductors. This intergranular effect is therefore worthy of remark when evaluating the volume fraction of superconductivity for the samples from the Meissner signal, in particular, at a low magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Krusin-Elbaum, A. P. Malozemoff, Y. Yeshurun, D. C. Cronemeyer, and F. Holtzberg,Physica C 153–155, 1460 (1988).

    Google Scholar 

  2. V. V. Alexandrov, V. V. Borisovskii, T. A. Fedotova, L. M. Fisher, N. V. Il'in, O. K. Smirnova, I. F. Voloshin, M. A. Baranov, and V. S. Gorbachev,Physica C 173, 458 (1991).

    Google Scholar 

  3. A. P. Malozemoff, L. Krusin-Elbaum, D. C. Cronemeyer, Y. Y. Eshurun, and F. Holtzberg,Phys. Rev. B 38, 6490 (1988).

    Google Scholar 

  4. K. A. Müller, M. Takashige, and J. G. Bednorz,Phys. Rev. Lett. 58, 1143 (1987).

    Google Scholar 

  5. F. Seidler, P. Böhm, H. Geues, W. Braunisch, E. Braun, W. Schnelle, Z. Drzazga, N. Wild, B. Roden, H. Schmidt, D. Wohlleben, I. Felner, and Y. Wolfus,Physica C 157, 375 (1989).

    Google Scholar 

  6. S. Ruppel, G. Michaels, H. Geus, J. Kalenborn, W. Schlabitz, B. Roden, and D. Wohlleben,Physica C 174, 233 (1991).

    Google Scholar 

  7. D. Wohlleben, G. Michels, and S. Ruppel,Physica C 174, 242 (1991).

    Google Scholar 

  8. J. R. Clem,Physica C 153–155, 50 (1988).

    Google Scholar 

  9. K.-H. Muller,Physica C 159, 717 (1989).

    Google Scholar 

  10. P. Svendlindh, K. Niskanane, P. Norling, P. Nordblad, L. Lundgren, B. Lönnberg, and T. Lundström,Physica C 162–164, 1365 (1989).

    Google Scholar 

  11. W. H. Lee, Y. T. Haung, S. W. Lu, K. Chen, and P. T. Wu,Solid State Commun. 74, 97 (1990).

    Google Scholar 

  12. F. J. Blunt, A. R. Perry, A. M. Campbell, and R. S. Liu,Physica C 175, 539 (1991).

    Google Scholar 

  13. M. F. Tai, H. J. Wang, C. C. Lin, and H. L. Wang, 1992 Mater. Res. Soc. Spring Meeting, Vol. 275.

  14. H. J. Wang and M. F. Tai, unpublished work.

  15. W. Braunisch, N. Knauf, V. Kataev, S. Neuhausen, A. Grütz, A. Kock, B. Roden, D. Khomskii, and D. Wohlleben,Phys. Rev. Lett. 68, 1908 (1992).

    Google Scholar 

  16. M. H. Tai, private communication.

  17. S. Jin, H. M. O'Bryan, P. K. Gallagher, T. H. Teifel, R. J. Cava, R. A. Fastnacht, and G. W. Kammlott,Physica C 165, 415 (1990).

    Google Scholar 

  18. D. M. Pooke, R. G. Buckley, M. R. Presland, and J. L. Tallon,Phys. Rev. B 41, 6616 (1990).

    Google Scholar 

  19. S. C. Wu, F. H. Chen, H. S. Koo, M. F. Tai, and T. Y. Tseng, submitted to 5th International Symposium on Superconductivity.

  20. J. Karpinski, E. Kaldis, E. Jilek, S. Rusiechi, and B. Bucher,Nature (London) 336, 660 (1988).

    Google Scholar 

  21. D. E. Morris, J. H. Nickel, J. Y. T. Wei, N. G. Asmer, J. S. Scott, V. M. Scheven, C. T. Hultgren, A. G. Markelz, J. E. Post, D. J. Heaney, D. R. Veblen, and R. M. Hazen,Phys. Rev. B 39, 7347 (1989).

    Google Scholar 

  22. D.-X. Chen, J. Nogues, and K. V. Rao,J. Appl. Phys. 64, 2533 (1988).

    Google Scholar 

  23. V. Skumryev, M. R. Koblischka, and H. Kronmlür,Physica C 184, 332 (1991).

    Google Scholar 

  24. H. Küpfer, I. Apfelstedt, R. Flokiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf,Cryogenics 28, 650 (1988).

    Google Scholar 

  25. D.-X. Chen, J. Nogues, and K. V. Rao,Cryogenics 29, 800 (1989).

    Google Scholar 

  26. Y. B. Kim, C. F. Hempstead, and A. R. Strnad,Phys. Rev. Lett. 9, 306 (1962).

    Google Scholar 

  27. J. R. Clem and V. G. Kogan,Jpn. J. Appl. Phys. 26, 1161 (1987).

    Google Scholar 

  28. M. W. Coffey and J. R. Clem,Phys. Rev. B 45, 9872 (1992).

    Google Scholar 

  29. M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975), 113.

    Google Scholar 

  30. J. C. Martinez, J. J. Prejean, J. Karpinski, E. Kaldis, and P. Bordet,Solid State Commum. 75, 315 (1990).

    Google Scholar 

  31. W. C. Lee and D. M. Ginsberg,Phys. Rev. B 45, 7402 (1992).

    Google Scholar 

  32. T. Wada, N. Suzuki, A. Ichinose, Y. Yaegashi, H. Yamauchi, and S. Tanaka,Jpn. J. Appl. Phys. 29, L915 (1990).

    Google Scholar 

  33. G. Triscone, T. Graf, A. Junod, D. Sanchez, O. Brunner, D. Cattani, and J. Muller,Physica C 168, 40 (1990).

    Google Scholar 

  34. G. L. Carr, S. Perkowitz, and D. B. Tanner, inInfrared and Millimeter Waves, K. J. Button, ed. (Academic Press, London, 1985), Vol. 13, p. 171.

    Google Scholar 

  35. K. Scharnberg and D. Walker,J. Supercond. 3, 269 (1990).

    Google Scholar 

  36. F. London, inSuperfluids (Wiley, New York, 1950), Vol. 1, p. 35.

    Google Scholar 

  37. D. K. Finnemore, R. N. Shelton, J. R. Clem, R. W. McCallum, H. C. Ku, R. E. McCarley, S. C. Chen, P. Klavins, and V. Kogan,Phys. Rev. B 35, 5319 (1987).

    Google Scholar 

  38. F. H. Chen, C. W. Shih, M. F. Tai, and T. Y. Tseng, in preparation.

  39. J. D. Jackson,Classical Electrodynamics (Wiley, New York, 1975), Ch. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F.H., Horng, W.C., Hsu, H.T. et al. Paramagnetic Meissner effect of high-temperature granular superconductors: Interpretation by anisotropic and isotropic models. J Supercond 8, 43–56 (1995). https://doi.org/10.1007/BF00732240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732240

Key words

Navigation