Skip to main content
Log in

Universal Behavior and Temperature Evolution of the Magnetoresistance Hysteresis in Granular High-Temperature Superconductors Y–Ba–Cu–O

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Regularities in the behavior of the magnetoresistance hysteresis R(H) in the granular yttrium high-temperature superconductors (HTSs) have been established. For this purpose, a comparative analysis of the magnetotransport properties has been carried out on the granular HTS samples, which exhibit (i) approximately the same magnetic properties and temperatures of the onset of the superconducting transition (90.5–93.5 K, which is characteristic of HTS grains) and (ii) different critical transport currents JC (which is characteristic of grain boundaries). Despite a significant (by more than an order of magnitude) spread of the JC values for the three samples, a universal behavior of the magnetoresistance hysteresis has been found, which is apparently inherent in all the granular Y–Ba–Cu–O compounds. The R(H) hysteresis is extremely broad and, in a fairly wide external field range, the dependence of the magnetoresistance hysteresis width ΔН on the field Hdec (the external field for the decreasing hysteresis branch is Н = Hdec) is almost linear: ΔHHdec. This behavior is observed over the entire temperature range of implementation of the superconducting state (the investigations have been carried out at temperatures of 77–88 and 4.2 K). The result obtained has been explained by considering the effective field in grain boundaries, which is a superposition of the external field and the field induced by the magnetic moments of grains. The field induced by grains, in turn, significantly increases in the region of grain boundaries due to the magnetic flux compression (the grain boundary length is shorter than the HTS grain size by several orders of magnitude). The aforesaid has been confirmed by the analysis of the R(H) hysteresis for the Y–Ba–Cu–O- and CuO-based HTS composite, in which the grain boundary length is purposefully increased; as a result, the flux compression is less pronounced and the R(H) hysteresis narrows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. If the grain boundaries have a metallic conductivity [3, 6], one may expect a decrease in RNGB with temperature, which will lead to the somewhat higher RNGB value for the data in Fig. 7.

  2. The effective thickness of the boundaries between HTS grains in the composite depends on the concentration of a nonsuperconducting component [6, 23, 53, 72].

REFERENCES

  1. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B 47, 470 (1993).

    Article  ADS  Google Scholar 

  2. M. Prester, Supercond. Sci. Technol. 11, 333 (1998).

    Article  ADS  Google Scholar 

  3. M. I. Petrov, D. A. Balaev, B. P. Khrustalev, and K. S. Aleksandrov, Phys. C (Amsterdam, Neth.) 235240, 3043 (1994).

  4. R. Gross, Phys. C (Amsterdam, Neth.) 432, 105 (2005).

  5. J. Mannhart, Phys. C (Amsterdam, Neth.) 450, 152 (2006).

  6. M. I. Petrov, D. A. Balaev, and D. M. Gokhfel’d, Phys. Solid State 49, 619 (2007).

    Article  ADS  Google Scholar 

  7. J. H. Durrell and N. A. Rutter, Supercond. Sci. Technol. 22, 013001 (2009).

    Article  ADS  Google Scholar 

  8. X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, and X. Granados, Supercond. Sci. Technol. 25, 123001 (2012).

    Article  ADS  Google Scholar 

  9. G. Wang, M. J. Raine, and D. P. Hampshire, Supercond. Sci. Technol. 30, 104001 (2017).

    Article  ADS  Google Scholar 

  10. R. J. Joshi, R. B. Hallock, and J. A. Taylor, Phys. Rev. B 55, 9107 (1997).

    Article  ADS  Google Scholar 

  11. J. W. C. de Vries, G. M. Stollman, and M. A. M. Gijs, Phys. C (Amsterdam, Neth.) 157, 406 (1989).

  12. A. C. Wright, K. Zhang, and A. Erbil, Phys. Rev. B 44, 863 (1991).

    Article  ADS  Google Scholar 

  13. C. Ganey, H. Petersen, and R. Bednar, Phys. Rev. B 48, 3388 (1993).

    Article  ADS  Google Scholar 

  14. H. S. Gamchi, G. J. Russell, and K. N. R. Taylor, Phys. Rev. B 50, 12950 (1994).

    Article  ADS  Google Scholar 

  15. R. J. Soulen, T. L. Francavilla, W. W. Fuller-Mora, M. M. Miller, C. H. Joshi, W. L. Carter, A. J. Rodenbush, M. D. Manlief, and D. Aized, Phys. Rev. B 50, 478 (1994).

    Article  ADS  Google Scholar 

  16. D. H. Liebenberg, R. J. Soulen, T. L. Francavilla, W. W. Fuller-Mora, P. C. McIntyre, and M. J. Cima, Phys. Rev. B 51, 11838 (1995).

    Article  ADS  Google Scholar 

  17. R. J. Soulen, T. L. Francavilla, A. R. Drews, L. Toth, M. S. Osofsly, W. L. Lechter, and E. F. Skelton, Phys. Rev. B 51, 1393 (1995).

    Article  ADS  Google Scholar 

  18. W. M. Tieran, R. Joshi, and R. B. Hallock, Phys. Rev. B 48, 3423 (1993).

    Article  ADS  Google Scholar 

  19. Y. Zhao, X. B. Zuge, J. M. Xu, and L. Cao, Phys. Rev. B 49, 6985 (1994).

    Article  ADS  Google Scholar 

  20. L. Urba, C. Acha, and V. Bekeris, Phys. C (Amsterdam, Neth.) 279, 95 (1997).

  21. H. Shakeripour and M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001).

    Article  ADS  Google Scholar 

  22. M. R. Mohammadizadeh and M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003).

    Article  ADS  Google Scholar 

  23. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 48, 826 (2006).

    Article  ADS  Google Scholar 

  24. M. A. Vasyutin, Tech. Phys. Lett. 39, 1078 (2013).

    Article  ADS  Google Scholar 

  25. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 60, 470 (2018).

    Article  ADS  Google Scholar 

  26. T. V. Sukhareva and V. A. Finkel, JETP Lett. 108, 243 (2018).

    Article  ADS  Google Scholar 

  27. T. V. Sukhareva and V. A. Finkel, J. Low Temp. Phys. 44, 194 (2018).

    Article  Google Scholar 

  28. T. V. Sukhareva and V. A. Finkel, J. Low Temp. Phys. 46, 550 (2020).

    Article  Google Scholar 

  29. S. Shifang, Z. Yong, P. Guoqian, Y. Daoq, Z. An, C. Zuyao, Q. Yitai, K. Eiyan, and Z. Qirui, Europhys. Lett. 6, 359 (1988).

    Article  ADS  Google Scholar 

  30. Y. J. Quian, Z. M. Tang, K. Y. Chen, B. Zhou, J. W. Qui, B. C. Miao, and Y. M. Cai, Phys. Rev. B 39, 4701 (1989).

    Article  ADS  Google Scholar 

  31. P. Mune, F. C. Fonseca, R. Muccillo, and R. F. Jardim, Phys. C (Amsterdam, Neth.) 390, 363 (2003).

  32. N. D. Kuz’michev, JETP Lett. 74, 262 (2001).

    Article  ADS  Google Scholar 

  33. N. D. Kuz’michev, Phys. Solid State 43, 2012 (2001).

    Article  ADS  Google Scholar 

  34. I. Felner, E. Galstyan, B. Lorenz, D. Cao, Y. S. Wang, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 167, 134506 (2003).

    Article  ADS  Google Scholar 

  35. T. V. Sukhareva and V. A. Finkel, J. Exp. Theor. Phys. 107, 787 (2008).

    Article  ADS  Google Scholar 

  36. T. V. Sukhareva and V. A. Finkel’, Phys. Solid State 50, 1001 (2008).

    Article  ADS  Google Scholar 

  37. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Tech. Phys. 53, 321 (2008).

    Article  Google Scholar 

  38. T. V. Sukhareva and V. A. Finkel’, Phys. Solid State 52, 452 (2010).

    Article  ADS  Google Scholar 

  39. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Phys. Solid State 51, 1105 (2009).

    Article  ADS  Google Scholar 

  40. D. A. Balaev, S. I. Popkov, S. V. Semenov, A. A. Bykov, K. A. Shaykhutdinov, D. M. Gokhfeld, and M. I. Petrov, Phys. C (Amsterdam, Neth.) 470, 61 (2010).

  41. A. Altinkok, K. Kilic, M. Olutas, and A. Kilic, J. Supercond. Nov. Magn. 26, 3085 (2013).

    Article  Google Scholar 

  42. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, Phys. Solid State 56, 1542 (2014).

    Article  ADS  Google Scholar 

  43. J. E. Evetts and B. A. Glowacki, Cryogenics 28, 641 (1988).

    Article  ADS  Google Scholar 

  44. M. E. McHenry, P. P. Maley, and J. O. Willis, Phys. Rev. B 40, 2666 (1989).

    Article  ADS  Google Scholar 

  45. E. Altshuler, J. Musa, J. Barroso, A. R. R. Papa, and V. Venegas, Cryogenics 33, 308 (1993).

    Article  ADS  Google Scholar 

  46. P. Mune, E. Govea-Alcaide, and R. F. Jardim, Phys. C (Amsterdam, Neth.) 354, 275 (2001).

  47. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 54, 2155 (2012).

    Article  ADS  Google Scholar 

  48. D. López and F. de la Cruz, Phys. Rev. B 43, 11478 (1991).

    Article  ADS  Google Scholar 

  49. D. López, R. Decca, and F. de la Cruz, Supercond. Sci. Technol. 5, S276 (1992).

    Article  ADS  Google Scholar 

  50. O. V. Gerashchenko and S. L. Ginzburg, Supercond. Sci. Technol. 13, 332 (2000).

    Article  ADS  Google Scholar 

  51. A. Kilic, K. Kilic, S. Senoussi, and K. Demir, Phys. C (Amsterdam, Neth.) 294, 203 (1998).

  52. D. Daghero, P. Mazzetti, A. Stepanescu, and P. Tura, Phys. Rev. B 66, 11478 (2002).

    Article  Google Scholar 

  53. D. A. Balaev, A. G. Prus, K. A. Shaykhutdinov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 20, 495 (2007).

    Article  ADS  Google Scholar 

  54. S. V. Semenov, D. A. Balaev, M. A. Pochekutov, and D. A. Velikanov, Phys. Solid State 59, 1291 (2017).

    Article  ADS  Google Scholar 

  55. D. A. Balaev, S. V. Semenov, and M. A. Pochekutov, J. Appl. Phys. 122, 123902 (2017).

    Article  ADS  Google Scholar 

  56. A. V. Mitin, Phys. C (Amsterdam, Neth.) 235240, 3311 (1994).

  57. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 46, 1798 (2004).

    Article  ADS  Google Scholar 

  58. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 49, 1829 (2007).

    Article  ADS  Google Scholar 

  59. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 53, 914 (2011).

    Article  ADS  Google Scholar 

  60. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53, 922 (2011).

    Article  ADS  Google Scholar 

  61. D. A. Balaev, S. V. Semenov, and M. I. Petrov, Phys. Solid State 55, 2422 (2013).

    Article  ADS  Google Scholar 

  62. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov, Phys. Solid State 56, 649 (2014).

    Article  ADS  Google Scholar 

  63. D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovski, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, J. Exp. Theor. Phys. 105, 1174 (2007).

    Article  ADS  Google Scholar 

  64. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, J. Exp. Theor. Phys. 108, 241 (2009).

    Article  ADS  Google Scholar 

  65. D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).

    Article  ADS  Google Scholar 

  66. D. A. Balaev, S. V. Semenov, and M. I. Petrov, J. Supercond. Nov. Magn. 27, 1425 (2014).

    Article  Google Scholar 

  67. S. V. Semenov and D. A. Balaev, Phys. C (Amsterdam, Neth.) 550, 19 (2018).

  68. S. V. Semenov and D. A. Balaev, J. Supercond. Nov. Magn. 32, 2409 (2019).

    Article  Google Scholar 

  69. S. V. Semenov and D. A. Balaev, Phys. Solid State 62, 1136 (2020).

    Article  ADS  Google Scholar 

  70. S. V. Semenov, A. D. Balaev, and D. A. Balaev, J. Appl. Phys. 125, 033903 (2019).

    Article  ADS  Google Scholar 

  71. G. Blatter, M. V. Feigel’man, V. B. Gekshkebein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  72. M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, and K. S. Aleksandrov, Supercond. Sci. Technol. 14, 798 (2001).

    Article  ADS  Google Scholar 

  73. D. M. Gokhfeld, Phys. Solid State 56, 2380 (2014).

    Article  ADS  Google Scholar 

  74. D. M. Gokhfel’d, Tech. Phys. Lett. 45, 1 (2019).

    Article  ADS  Google Scholar 

  75. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  76. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Phys. C (Amsterdam, Neth.) 391, 345 (2003).

  77. D. A. Balaev, S. I. Popkov, S. V. Semenov, A. A. Bykov, E. I. Sabitova, A. A. Dubrovskiy, K. A. Shaikhutdinov, and M. I. Petrov, J. Supercond. Nov. Magn. 24, 2129 (2011).

    Article  Google Scholar 

  78. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 59, 1492 (2017).

    Article  ADS  Google Scholar 

  79. D. A. Balaev, S. V. Semenov, and D. M. Gokhfeld, J. Supercond. Nov. Magn. (2021, in press). https://doi.org/10.1007/s10948-021-05812-2

  80. U. Gunsenheimer, U. Schussler, and R. Kümmel, Phys. Rev. B 49, 6111 (1994).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.M. Gokhfeld for discussion of the results. The measurements of the transport properties were performed in part on a PPMS-6000 system of the Center for Collective Use, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Semenov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.V., Balaev, D.A. & Petrov, M.I. Universal Behavior and Temperature Evolution of the Magnetoresistance Hysteresis in Granular High-Temperature Superconductors Y–Ba–Cu–O. Phys. Solid State 63, 1069–1080 (2021). https://doi.org/10.1134/S1063783421070192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070192

Keywords:

Navigation