Skip to main content
Log in

Some characteristics of early stages of stress corrosion cracking

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Environment-induced crack growth generally progresses through several stages prior to component failure. Crack initiation, short crack growth, and stage I growth are early stages in crack development that are summarized in this paper. The implications of these stages on component reliability derive from the extended time that the crack exists in the early stages because crack velocity is low. The duration of the early stages provides a greater opportunity for corrective action if the short cracks can be detected. Several important factors about the value of understanding short crack behavior include: (1) component life prediction requires a knowledge of the total life cycle of the crack including the early stages, (2) greater reliability is possible if the transition between short and long crack behavior is known since component life after this transition is short, and (3) remedial actions are often more effective for short than long cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Eickemeyer,Corrosion 43:693 (1987).

    Google Scholar 

  2. P. L. Andresen, I. P. Vasatis, and F. P. Ford,Corrosion/90 (NACE, Houston, TX), Paper 495.

  3. R. P. Gangloff,Metall. Trans. A 16:953 (1985).

    Google Scholar 

  4. R. H. Jones, M. J. Danielseon, and D. R. Baer,J. Mater. Energy Syst. 8:185 (1986).

    Google Scholar 

  5. E. P. Simonen, R. H. Jones, and M. J. Danielson,Corr. Sci. 34(6):899 (1993).

    Google Scholar 

  6. S. J. Hudak,J. Eng. Mater. Technol. 103:26 (1981).

    Google Scholar 

  7. K. J. Miller,Fatigue Eng. Mater. Struct. 5:223 (1982).

    Google Scholar 

  8. S. Suresh and R. O. Ritchie,Int. Metall. 29:445 (1984).

    Google Scholar 

  9. B. N. Leis, M. F. Kanninen, A. T. Hopper, J. Ahmad, and D. Broek, Tech. Rep. AFWAL-TR-83-4019, January (U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH 45433, 1983).

    Google Scholar 

  10. R. P. Gangloff and R. O. Ritchie, inFundamentals of Deformation and Fracture, B. A. Bilby, K. J. Miller, and J. R. Willis, eds. (Cambridge University Press, Cambridge, Cambridgeshire, 1985), p. 529.

    Google Scholar 

  11. J. Lankford,Fatigue Fract. Eng. Mater. Struct. 8:161 (1985).

    Google Scholar 

  12. R. O. Ritchie and J. Lankford,Mater. Sci. Engr. 84:11 (1986).

    Google Scholar 

  13. S. Lee, K. Kim, and S. Pyun,Sci. Metall. 22:31 (1988).

    Google Scholar 

  14. R. H. Jones and E. P. Simonen,Mater. Sci. Eng. A160:127 (1993).

    Google Scholar 

  15. A. L. Lund and R. H. Jones, Stage I behavior in a stress corrosion study of type 304 stainless steel,Corrosion/94, Paper No. 215.

  16. E. N. Pugh, inProc. of Atomistics of Fracture, R. M. Latanision and J. R. Pickens, eds. (Plenum Press, New York, 1983), p. 997.

    Google Scholar 

  17. R. C. Newman and K. Sieradzki, inChemistry and physics of fracture, R. M. Latanision and R. H. Jones, eds. (Martinus Nijhoff Publishers, The Netherlands, 1987), p. 597.

    Google Scholar 

  18. P. H. Hutton, K. E. Stahlkopf, and E. L. Zebroski, 3rd Conf. on Periodic Inspection of Pressurized Components, I. Mech. E. London, England (1984).

  19. H. H. Kusanagi, Kimura, H. Imaeda, I. Ishihara, and S. Ohahsi, The 5th Int. Acoustic Emission Symp., Tokyo, Japan (1980), p. 125.

  20. S. T. Yuyama. Kishi and Y. Hisamatsu,J. Mater. Energy Syst. 5:212 (1984).

    Google Scholar 

  21. W. J. Pollock, D. Hardie, and N. J. H. Holroyd,Br. Corrosion J. 17:203 (1982).

    Google Scholar 

  22. R. H. Jones, M. A. Friesel, and W. W. Gerberich, Acoustic emission from intergranular subcritical crack growth,Metall. Trans. A 20A:637 (1989).

    Google Scholar 

  23. R. H. Jones, M. A. Friesel, and R. Pathania, Evaluation of stress corrosion crack initiation using acoustic emission,Corrosion 47: 105–115 (1991).

    Google Scholar 

  24. R. H. Jones and M. A. Friesel, Acoustic emission during pitting and transgranular crack initiation in type 304 stainless steel,Corrosion 48:751 (1992).

    Google Scholar 

  25. W. W. Gerberich, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.H., Simonen, E.P. Some characteristics of early stages of stress corrosion cracking. J Nondestruct Eval 15, 121–127 (1996). https://doi.org/10.1007/BF00732039

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732039

Key words

Navigation