Skip to main content
Log in

Biosynthesisin vitro of neolactotetraosylceramide by a galactosyltransferase from mouse T-lymphoma: purification and kinetic studies; synthesis of neolacto and polylactosamine core

  • Papers Dedicated To Dr Sen-Itiroh Hakomori
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The galactosyltransferase, GalT-4, which catalyses the biosynthesisin vitro of neolactotetraosylceramide, nLcOse4Cer (Galβ1-4GleNAcβ1-3Galβ1-4Glc-Cer) from lactotriaosylceramide, LcOse3Cer (GlcNAcβ1-3Galβ1-4Glc-Cer), and UDP-galactose has been purified 107 500-fold from a mineral oil induced mouse T-lyphoma P-1798, using affinity columns. The purified enzyme is partially stabilized in the presence of phospholipid liposomes. Two closely migrating protein bands of apparent molecular weights 56 kDa and 63 kDa were observed after sodium dodecyl sulfate polyacrylamide gel electrophoresis of highly purified mouse GalT-4. These two protein bands, when subjected to limited proteolysis, resulted in three peptides with identical mobilities indicating amino acid sequence identity between the proteins. Both protein bands from P-1798 gave a positive immunostain when tested with polyclonal antibody against bovine lactose synthetase (UDP-Gal:Glc β4-galactosyltransferase) following Western blot analysis on nitrocellulose paper. The enzyme has a pH optimum between 6.5 and 7.0 and like all other galactosyltransferases, GalT-4 has absolute requirements for divalent cation (Mn2+). TheK m values for the substrate LcOse3Cer and donor UDP-galactose are 110 and 250 µm, respectively. Substrate competition studies with LcOse3Cer and either asialo-agalacto-α1-acid glycoprotein orN-acetylglucosamine revealed that these reactions might be catalysed by the same protein. The only other glycolipid which showed acceptor activity toward the purified GalT-4 was iLcOse5Cer (GlcNAcβ1-1-3Galβ1-4Lc3), the precursor for polylactosamine antigens. However, competition studies with these two active substrates using the most purified enzyme fraction, revealed that these two reactions might be catalysed by two different proteins since the experimental values were closer to the theoretical values calculated for two enzymes. Interestingly however, it seems that the GalT-4 from P-1798 has an absolute requirement for anN-acetylglucosamine residue in the substrate since the lyso-derivative (GlcNH2β1-3Galβ1-4Glc-sphingosine) of the acceptor glycolipid LcOse3Cer is completely inactive as substrate while theK m andV max of the reacetylated substrate (GlcNacβ1-3Galβ1-4Glc-acetylsphingosine) was comparable with LcOse3Cer. Autoradiography of the radioactive product formed by purified P-1798 GalT-4 confirmed the presence of nLcOse4Cer, as the product cochromatographed with authentic glycolipid. The monoclonal antibody IB-2, specific for nLcOse4Cer, also produced a positive immunostained band on TLC as well as giving a positive ELISA when tested with radioactive product obtained using a highly purified enzyme from mouse P-1798 T-lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediamine tetraacetate

ME:

β-mercaptoethanol

PEG:

polyethylene glycol

PBS:

phosphate buffered saline

Suc:

sucrose

Mn2+ :

manganese

Gal:

galactose

GlcNAc:

N-acetylglucosamine

UDP-Gal:

Uridine diphosphate galactose

Ab:

antibody

SDS:

sodium dodecyl sulphate

PAGE:

polyacrylamide gel electrophoresis

ECB:

embryonic chicken brain

Cer:

ceramide

nLc4 or NlcOse4Cer:

Galβ1-4GleNacβ1-3Galβ1-4Glc-Cer, neoLactotetraosylceramide

Lc3 or LcOse3Cer:

GlcNacβ1-3Galβ1-4Glc-Cer, lactotriaosylceramide

iLc5:

iLcOse5Cer, GlcNAcβ1-3nLcOse4Cer

nLc6:

nLcOse6Cer, Galβ1-4iLcOse5Cer

SAGalα1AGP:

asialo-agalactoα1-acid glycoprotein

TLC:

thin layer chromatography

References

  1. Hakomori S (1981)Annu Rev Biochem 50: 733–64.

    Google Scholar 

  2. Hakomori S (1984)Annu Rev Immunol 2: 103–26.

    Google Scholar 

  3. Hakomori S (1989)Adv Cancer Res 52: 257–331.

    Google Scholar 

  4. Basu M, Basu S (1972)J Biol Chem 247: 1489–95.

    Google Scholar 

  5. Basu S, Basu M (1982)The Glycoconjugates III: 265–85.

    Google Scholar 

  6. Basu M, De T, Das KK, Kyle JW, Chon HC, Schaeper RJ, Basu S (1987)Methods Enzymol 138: 575–607.

    Google Scholar 

  7. Trayer IP, Hill RL (1971)J Biol Chem 246: 6665–75.

    Google Scholar 

  8. Brodbeck U, Ebner KE (1966)J Biol Chem 241: 762–64.

    Google Scholar 

  9. Smith CA, Brew K (1977)J Biol Chem 252: 7294–99.

    Google Scholar 

  10. Berliner LJ, Robinson RD (1982)Biochemistry 24: 6340–43.

    Google Scholar 

  11. Basu S, Basu M, De T, Kyle JW, Das KK, Schaeper RJ (1986)Enz Lipid Metab II (Freysz L, Dreyfus H, Massarelli R and Gatt S, eds) 233–45.

  12. Basu S, Basu M, Das KK, Daussin F, Schaeper RJ, Banerjee P, Khan F, Suzuki I (1988)Biochimie 70: 1551–63.

    Google Scholar 

  13. Basu M, Das KK, Zhang B, Khan FA, Basu S (1988)Ind J Biochem Biophys 25: 112–18.

    Google Scholar 

  14. Ghosh S (1992) PhD Thesis. University of Notre Dame, Notre Dame, Indiana.

    Google Scholar 

  15. Furukawa K, Roth S (1985)Biochem J 227: 573–82.

    Google Scholar 

  16. Jenis DM, Basu S, Pollard M (1982)Cancer Biochem Biophys 6: 37–45.

    Google Scholar 

  17. Holmes E (1989)Arch Biochem Biophys 270: 630–46.

    Google Scholar 

  18. Jenner NK, Holmes EH (1990)Comp Biochem Physiol 96B: 689–96.

    Google Scholar 

  19. Shaper NL, Shaper JH, Meuth JL, Fox JL, Chang H, Kirsch IR, Hollis GF (1986)Proc Natl Acad Sci USA 83: 1573–77.

    Google Scholar 

  20. Narimatsu H, Sinha S, Brew K, Okayama H, Qasba PK (1986)Proc Natl Acad Sci USA 83: 4721–24.

    Google Scholar 

  21. Masri KA, Appert HE, Fukuda MN (1988)Biochem Biophys Res Commun 157: 657–63.

    Google Scholar 

  22. Nakazawa K, Ando T, Kimura T, Narimatsu H (1988)J Biochem 104: 165–68.

    Google Scholar 

  23. Hollis GF, Douglas JG, Shaper NL, Shaper JH, Stafford-Hollis JM, Evans RJ, Kirsch IR (1989)Biochem Biophys Res Commun 162: 1069–75.

    Google Scholar 

  24. D'Agostaro G, Bendiak B, Tropak M (1989)Eur J Biochem 183: 211–17.

    Google Scholar 

  25. Ghosh S, Basu SS, Basu S (1992)Biochem Biophys Res Commun 189: 1215–1222.

    Google Scholar 

  26. Basu SS, Ghosh S, Basu S (1994)Glycobiology 4: 738.

    Google Scholar 

  27. Rajan VP, Larsen RD, Ajmera S, Ernst LK, Lowe JB (1989)J Biol Chem 264: 11158–67.

    Google Scholar 

  28. Larsen RD, Rajan VP, Russ MN, Kukowska-Latallo J, Cummings RD, Lowe JB (1989)Proc Natl Acad Sci USA 86: 8227–31.

    Google Scholar 

  29. Joziasse DH, Shaper JH, Van den Eijnden DH, Van Tunen AJ, Shaper NL (1989)J Biol Chem 264: 14290–97.

    Google Scholar 

  30. Sherwood AL, Green TG, Holmes EH (1989)J Cell Biochem 50: 165–77.

    Google Scholar 

  31. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori SI (1990)J Biol Chem 265: 1146–51.

    Google Scholar 

  32. Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC (1987)J Biol Chem 262: 17735–43.

    Google Scholar 

  33. Paulson JC, Colley KJ (1989)J Biol Chem 264: 17615–18.

    Google Scholar 

  34. March SC, Cuatrecasas P (1973)Anal Biochem 60: 149–52.

    Google Scholar 

  35. Barker R, Olsen KW, Shaper JH, Hill RL (1972)J Biol Chem 247: 7135–47.

    Google Scholar 

  36. Ghosh S, Lee SM, Brown T, Basu M, Hawes JW, Davidson DA, Basu S (1991)Anal Biochem 196: 252–61.

    Google Scholar 

  37. Higashi H, Basu S (1982)Anal Biochem 120: 159–64.

    Google Scholar 

  38. Suzuki Y, Hirabayashi Y, Matsumoto M (1984)J Biochem 95: 1219–22.

    Google Scholar 

  39. Ghosh S, Das KK, Daussin F, Basu S (1990)Ind J Biochem 27: 379–85.

    Google Scholar 

  40. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951)J Biol Chem 193: 265–75.

    Google Scholar 

  41. Bradford M (1976)Anal Biochem 72: 248–54.

    Google Scholar 

  42. Laemmli UK (1970)Nature 227: 680–85.

    Google Scholar 

  43. Merril CR (1981)Science 211: 1437–38.

    Google Scholar 

  44. Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977)J Biol Chem 252: 1102–6.

    Google Scholar 

  45. Chrambach A, Reisfold RA, Wykoff M, Zaccari Z (1967)Anal Biochem 20: 150–56.

    Google Scholar 

  46. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109: 399–402.

    Google Scholar 

  47. Chalifour RJ, Spiro RG (1988)J Biol Chem 263: 15673–80.

    Google Scholar 

  48. Mitranic MM, Moscarello MA (1980)Can J Biochem 58: 809–14.

    Google Scholar 

  49. Strous GJ, Van Kerhof P, Willemsen R, Geuze HJ, Berger EG (1983)J Cell Biol 97: 723–27.

    Google Scholar 

  50. Basu S, Kaufman B, Roseman S (1965)J Biol Chem 240: 4115–17.

    Google Scholar 

  51. Ghosh S, Kyle JW, Daussin F, Dastgheib S, Li Z, Basu S (1995)Glycoconjugate J 12: 838–47.

    Google Scholar 

  52. Dixon M, Webb EC (1979)The Enzymes p. 85. New York: Academic Press.

    Google Scholar 

  53. Basu S, Ghosh S, Basu M, Hawes JW, Das KK, Zhang BJ, Li Z, Weng SA, Westervelt C (1990)Ind J Biochem Biophys 27: 386–95.

    Google Scholar 

  54. Basu S (1991)Glycobiology 1: 469–75.

    Google Scholar 

  55. Basu M, Hawes JW, Li Z, Ghosh S, Khan FA, Zhang BA, Basu S (1991)Glycobiology 1: 527–35.

    Google Scholar 

  56. Saito T, Hakomori SI (1971)J Lipid Res 12: 257–59.

    Google Scholar 

  57. Potter M (1976) InMosbacher Colloquim (Melchers F, Rajewsky K, eds) pp. 141–72. New York: Springer-Verlag.

    Google Scholar 

  58. Matheison BJ, Campbell PS, Potter M, Asosky R (1978)J Exp Med 147: 1267–79.

    Google Scholar 

  59. Basu M, Basu S, Potter M (1980)ACS Symp 128: 187–212.

    Google Scholar 

  60. Navaratnam N, Ward S, Fisher C, Kuhn NJ, Deen JN, Findlay JBC (1988)Eur J Biochem 171: 623–29.

    Google Scholar 

  61. Basu M, Khan FA, Das KK, Zhang BJ (1991)Carbohydr Res 209: 261–77.

    Google Scholar 

  62. Basu M, Basu S (1984)J Biol Chem 259: 12557–62.

    Google Scholar 

  63. Piller F, Carton JP (1983)J Biol Chem 258: 12293–99.

    Google Scholar 

  64. Van den Eijnden DH, Winterwerp H, Smeeman P, Schiphorst WECM (1983)J Biol Chem 258: 3435–37.

    Google Scholar 

  65. Basu S, Kaufman B, Roseman S (1968)J Biol Chem 243: 5802–4.

    Google Scholar 

  66. Chatterjee S, Ghosh N, Khurana S (1992)J Biol Chem 267: 7148–53.

    Google Scholar 

  67. Nishiwaki S, Taki T, Handa N, Hattori N, Takeshita K, Handa S (1992)Cancer Res 52: 1875–80.

    Google Scholar 

  68. Chou DKH, Jungalwala F (1994)J Neurochem 62: 307–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, M., Weng, SA., Tang, H. et al. Biosynthesisin vitro of neolactotetraosylceramide by a galactosyltransferase from mouse T-lymphoma: purification and kinetic studies; synthesis of neolacto and polylactosamine core. Glycoconjugate J 13, 423–432 (1996). https://doi.org/10.1007/BF00731475

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731475

Keywords

Navigation