Skip to main content
Log in

An approach for fluorometric determination of glycosyltransferase activities

  • Glycoconjugate Journal
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A new strategy for the fluorometric determination of glycosyltransferase activities is reported. The method involves dansyl chloride derivatization of the reduced form (pNH2phenyl) of a hydrophobic, aglycon moiety covalently linked to a number of acceptor substrates (pNO2phenyl). Focusing on the Golgi enzyme core 2N-acetylglucosaminyltransferase, we found that synthesis and fractionation of the dansylated substrate derivative were rapid, easy and inexpensive. Additionally, the corresponding enzyme assay proved reproducible and very sensitive, as 0.4 pmol of reaction product were readily detected. This fluorometric approach appears therefore to be a valid tool for investigating the monitoring differential expression of glycosyltransferases exhibiting low levels of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T:

transferase

Gal:

D-N-galactose

GlcNAc:

D-N-acetylglucosamine

GalNAc:

D-N-acetylgalactosamine

HPLC:

high pressure liquid chromatography

UDP:

uridine diphosphate

TES:

2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino}ethanesulfonic acid

pNp:

para-nitrophenyl

NMR:

nuclear magnetic resonance

DMSO:

dimethyl sulphoxide

References

  1. Muramatsu T (1988)J Cell Biochem 36: 1–14.

    Google Scholar 

  2. Dennis JW (1992) InCell Surface Carbohydrates and Cell Development (Fukuda M, ed.) pp. 161–94, Boca Raton: CRC Press.

    Google Scholar 

  3. Paulson JC, Colley KJ (1989)J Biol Chem 264: 17615–18.

    Google Scholar 

  4. Hakomori S (1989)Adv Cancer Res 52: 257–331.

    Google Scholar 

  5. Sadler JE, Beyer TA, Oppenheimer CL, Paulson JC, Prieels J-P, Rearick JI, Hill RL (1982)Methods Enzymol 83: 458–514.

    Google Scholar 

  6. Schachter H, Narasimhan S, Gleeson P, Vella G (1983)Methods Enzymol 98: 98–134.

    Google Scholar 

  7. Schachter H, Brockhausen I, Hull E (1987)Methods Enzymol (1989)179: 351–96.

    Google Scholar 

  8. Taniguchi N, Yanagisawa K, Makita A, Naiki, M (1985)J Biol Chem 260: 4908–13.

    Google Scholar 

  9. Datti A, Orlacchio A, Siminovitch KA, Dennis JW (1992)Anal Biochem 202: 262–66.

    Google Scholar 

  10. Keshvara LM, Gosselin S, Palcic MM (1993)Glycobiology 3: 416–18.

    Google Scholar 

  11. Taki T, Nishiwaki S, Handa N, Hattori N, Handa S (1994)Anal Biochem 219: 104–8.

    Google Scholar 

  12. Zhao JY, Dovichi NJ, Hindsgaul O, Gosselin S, Palcic MM (1994)Glycobiology 4: 239–42.

    Google Scholar 

  13. Nishikawa A, Fujii S, Sugiyama T, Taniguchi N (1988)Anal Biochem 170: 349–54.

    Google Scholar 

  14. Nishikawa A, Gu J, Fujii S, Taniguchi N (1990)Biochim Biophys Acta 1035: 313–18.

    Google Scholar 

  15. Palmerini CA, Datti A, Alunni S, VanderElst IE, Orlacchio A (1995)Anal Biochem 225: 315–20.

    Google Scholar 

  16. Kerbel RS, Florian MS, Man S, Dennis JW, McKenzie I (1980)J Natl Cancer Inst 64: 1221–30.

    Google Scholar 

  17. Amos B, Lotan R (1990)J Biol Chem 265: 19192–98.

    Google Scholar 

  18. Stanley P (1984)Annu Rev Genet 18: 525–52.

    Google Scholar 

  19. Datti A, Orlacchio A, Siminovitch KA, Dennis JW (1994)Glycosylat Dis 1: 127–35.

    Google Scholar 

  20. Seiler N (1970)Methods Biochem Anal 18: 259–337.

    Google Scholar 

  21. Gray WR (1972)Methods Enzymol 25: 121–38.

    Google Scholar 

  22. Goudreau N, Guis C, Soleilhac J-M, Roques BP (1994)Anal Biochem 219: 87–95.

    Google Scholar 

  23. Zhuang D, Grey A, Harris-Brandts M, Higgins E, Kashem MA, Dennis JW (1991)Glycobiology 1: 425–33.

    Google Scholar 

  24. Gray WR (1967)Methods Enzymol 11: 139–51.

    Google Scholar 

  25. Gros C, Labouesse, B (1969)Eur J Biochem 7: 463–70.

    Google Scholar 

  26. Seiler N, Demisch L (1982) InChemical Derivatisation in Analytical Chemistry Vol. 1 (Frei RW, Lawrence JF, eds) pp. 346–63. New York: Plenum Press.

    Google Scholar 

  27. Datti A, Dennis JW (1993)J Biol Chem 268: 5409–16.

    Google Scholar 

  28. Brockhausen I, Williams D, Matta KL, Orr J, Schachter H (1983)Can J Biochem Cell Biol 61, 1322–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmerini, C.A., Datti, A., Vanderelst, I.E. et al. An approach for fluorometric determination of glycosyltransferase activities. Glycoconjugate J 13, 631–636 (1996). https://doi.org/10.1007/BF00731451

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731451

Keywords

Navigation