Skip to main content
Log in

Does an animal peptide:N-glycanase have the dual role as an enzyme and a carbohydrate-binding protein?

  • Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Recently, we have reported purification and characterization of a de-N-glycosylating enzyme, peptide:N-glycanase (PNGase) found in C3H mouse fibroblast L-929 cells, and designated L-929 PNGase [Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1994)J Biol Chem 269, 17611–18]. The unique properties of L-929 PNGase are that the enzyme had a high affinity to the substrate glycopeptide (e.g.K m=114 µm for fetuin derived glycopentapeptide) and that the PNGase-catalysed reaction is strongly inhibited by the released free oligosaccharides but not by the free peptides formed, suggesting that L-929 PNGase is able to bind to a certain type of carbohydrate chain. In this study, we report the new findings of the mannan-binding property of L-929 PNGase; the de-N-glycosylating enzyme activity of L-929 PNGase was inhibited by yeast mannan and triomannose, Manα1 → 3(Manα1 → 6)Man, but not by mannose and α-methyl-d-mannoside. Furthermore, L-929 PNGase was revealed to bind to the glycan moiety of yeast mannan by using mannan-conjugated Sepharose 4B gel as a ligand, suggesting that L-929 PNGase could serve not only as an enzyme but also as a carbohydrate recognition proteinin vivo. Such ‘dual’ properties found for animal-derived L-929 PNGase are unique and are not shared with other previously characterized plant- and bacterial-origin PNGases — PNGase A and PNGase F, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GLC:

gas liquid chromatography

GlcNAc-Asn:

2-acetamido-1-β-(l-aspartamido)-1,2-dideoxy-d-glucose

BSA:

bovine serum albumin

DTT:

dithiothreitol

EDTA:

ethylenediaminetetraacetic acid

Gal:

d-galactose

GlcNAc:

N-acetyl-d-glucosamine

Man:

d-mannose; triomannose, Manα1 → 3(Manα1 → 6)Man;

MES:

2-(N-morphorino)ethanesulfonic acid

NeuAc:

N-acetyl-neuraminic acid

PNGase:

peptide:N 4-(N-accetylβ-glucosaminyl)asparagine amidase (peptide:N-glycanase,EC 3.5.1.52)

PNP:

p-nitrophenyl

References

  1. Drickamer K (1988)J Biol Chem 263:9557–60.

    Google Scholar 

  2. Drickamer K, Taylor ME (1993)Annu Rev Cell Biol 9:237–64.

    Google Scholar 

  3. Hirabayashi J (1993)Trends Glycosci Glycotechnol 5:251–70.

    Google Scholar 

  4. Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N (1980)Nature 285:66.

    Google Scholar 

  5. Sharon N, Lis H (1972)Science 177:949–59.

    Google Scholar 

  6. Hoshi M, De Santis R, Pinto MR, Cotelli F, Rosati F (1985)Zool Sci 2:65–69.

    Google Scholar 

  7. Hoshi M (1986)Adv Exp Med Biol 207:251–60.

    Google Scholar 

  8. Shur BD (1989)Biochim Biophys Acta 988:389–409.

    Google Scholar 

  9. Shur BD (1991)Glycobiology 1:563–75.

    Google Scholar 

  10. Skedlarek MD, Tulsiani DRP, Nagdas SK, Orgebin-Crist M-C (1993)Biol Reprod 49:204–13.

    Google Scholar 

  11. Miller DJ, Gong X, Decker G, Shur BD (1993)J Cell Biol 123:1431–40.

    Google Scholar 

  12. Litscher ES, Wassarman PM (1993)Trends Glycosci Glycotechnol 5:369–88.

    Google Scholar 

  13. Takahashi N (1977)Biochem Biophys Res Commun 76:1194–1201.

    Google Scholar 

  14. Plummer TH Jr, Phelan AW, Tarentino AL (1987)Eur J Biochem 163:167–73.

    Google Scholar 

  15. Plummer TH Jr, Elder JH, Alexander S, Phelan AW, Tarentino AL (1984)J Biol Chem 259:10700–4.

    Google Scholar 

  16. Seko A, Kitajima K, Inoue Y, Inoue S (1991)J Biol Chem 266:22110–14.

    Google Scholar 

  17. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1993)Biochem Biophys Res Commun 194:1124–30.

    Google Scholar 

  18. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1993)Glycoconjugate J 10:223.

    Google Scholar 

  19. Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1994)J Biol Chem 269:17611–18.

    Google Scholar 

  20. Roseman S (1970)Chem Phys Lipids 5:270–97.

    Google Scholar 

  21. Nomoto H, Inoue Y (1983)Eur J Biochem 135:243–50.

    Google Scholar 

  22. Li Y-T, Li S-C (1972)Methods Enzymol 28:702–13.

    Google Scholar 

  23. Kawasaki T, Etoh R, Yamashina I (1978)Biochem Biophys Res Commun 81:1018–24.

    Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)Anal Chem 28:350–56.

    Google Scholar 

  25. Nomoto H, Iwasaki M, Endo T, Inoue S, Inoue Y, Matsumura G (1982)Arch Biochem Biophys 218:335–41.

    Google Scholar 

  26. Kitazume S, Kitajima K, Inoue S, Inoue Y (1992)Anal Biochem 202:25–34.

    Google Scholar 

  27. Maynard Y, Baenziger JU (1982)J Biol Chem 257:3788–94.

    Google Scholar 

  28. Inoue S, Iwasaki M, Seko A, Kitajima K, Inoue Y (1993)Glycoconjugate J 10:223.

    Google Scholar 

  29. Ballou CE, Lewis MS (1991)J Biol Chem 266:8255–61.

    Google Scholar 

  30. Colley KJ, Beranek MC, Baenziger JU (1988)Biochem J 256:61–68.

    Google Scholar 

  31. Ofek I, Sharon N (1990)Curr Topics Microbiol Immunol 151:91–113.

    Google Scholar 

  32. Lasky LA (1992)Science 258:964–69.

    Google Scholar 

  33. Aruffo A (1992)Trends Glycosci Glycotechnol 4:146–51.

    Google Scholar 

  34. Ashwell G, Harfold J (1982)Annu Rev Biochem 51:531–54.

    Google Scholar 

  35. Hoyle GW, Hill RL (1991)J Biol Chem 266:1850–57.

    Google Scholar 

  36. Kornfeld S (1992)Annu Rev Biochem 61:307–30.

    Google Scholar 

  37. Roth S (1973)Quart Rev Biol 48:541–63.

    Google Scholar 

  38. Rubinsky B, Coger R, Ewart KV, Fletcher GL (1992)Nature 360:113–14.

    Google Scholar 

  39. Schweinle JE, Nishiyasu M, Ding TQ, Sastry K, Gilles SD, Ezekowitz AB (1993)J Biol Chem 268:364–70.

    Google Scholar 

  40. Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993)J Cell Biol 121:1409–21.

    Google Scholar 

  41. Lucas R, Magez S, De Leys R, Fransen L, Scheerlinck J-P, Rampelberg M, Sablon E, De Baestselier P (1994)Science 263:814–17.

    Google Scholar 

  42. Ackerman SJ, Corrette SE, Rosenberg HF, Bennett JC, Mastrianni DM, Nicholson-Weller A, Weller F, Chin DT, Tenen DG (1993)J Immunol 150:456–68.

    Google Scholar 

  43. Wen D, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE (1987)Biochemistry 26:4350–57.

    Google Scholar 

  44. Nakayama E, Von Hogen I, Parnes JR (1989)Proc. Natl Acad Sci USA 86:1352–56.

    Google Scholar 

  45. Rouquier S, Verdier J-M, Iovanna J, Dagorn J-C, Giorgi D (1991)J Biol Chem 266:786–91.

    Google Scholar 

  46. Takeya H, Nishida S, Miyata T, Kawada S, Saisaka Y, Morita T, Iwanaga S (1992)J Biol Chem 267:14109–17.

    Google Scholar 

  47. Seko A, Kitajima K, Iwasaki M, Inoue S, Inoue Y (1989)J Biol Chem 264:15922–29.

    Google Scholar 

  48. Seko A, Kitajima K, Inoue S, Inoue Y (1991)Biochem Biophys Res Commun 180:1165–71.

    Google Scholar 

  49. Richard M, Martin A, Louisot P (1975)Biochem Biophys Res Commun 64:109–14.

    Google Scholar 

  50. Shaper NL, Hollis GF, Douglas JG, Kirsch IR, Shaper JH (1988)J Biol Chem 263:10420–28.

    Google Scholar 

  51. Gonzalez-Yanes B, Cicero JM, Brown RD Jr, West CM (1992)J Biol Chem 267:9595–605.

    Google Scholar 

  52. Haeuw J-F, Michalski J-C, Strecker G, Spik G, Montreuil J (1991)Glycobiology 1:487–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Kitajima, K., Inoue, S. et al. Does an animal peptide:N-glycanase have the dual role as an enzyme and a carbohydrate-binding protein?. Glycoconjugate J 11, 469–476 (1994). https://doi.org/10.1007/BF00731283

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731283

Keywords

Navigation