Skip to main content
Log in

Molecular species analysis of glycosphingolipids from small intestine of Japanese quail,Coturnix coturnix Japonica by HPLC/FAB/MS

  • Glycopinion Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Neutral glycosphingolipids were isolated from quail small intestine and their structures were analysed. They contained: Galβ1-4GlcCer(LacCer), Galα1-4GalCer(Ga2Cer), Galα1-4Galβ1-4GlcCer(Gb3Cer), GlcNAcβ1-3Galβ1-4GlcCer(Le3Cer), GalNAcβ1-4Galβ1-4GlcCer(Gg3Cer), GalNAcβ1-4[GalNAcβ1-3]Galβ1-4GlcCer(LcGg4Cer), and GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4GlcCer (Forssman glycolipid) as well as glucosylceramide, galactosylceramide (Nishimura Ket al. 1984)Biochim Biophys Acta 796:269–76) and the Lex glycolipid, III3 Fucα-nLc4Cer (Nishimura Ket al. (1989)J. Biochem (Tokyo) 101:1315–18). The molecular species compositions of these glycosphingolipids were examined using fast atom bombardment-mass spectrometry linked with reversed-phase high-performance liquid chromatography. By such analysis, we could classify the quail glycosphingolipids into at least three classes: glycolipids rich in species having four hydroxyl groups in the ceramides (GalCer, Gg3Cer, LcGg4Cer and Lex), those rich in the ceramides ofN-acyl trihydroxysphinganine with normal fatty acids (Lc3Cer), and glycolipids rich in the ceramides ofN-acyl sphingenine with normal fatty acids (LacCer, Gb3Cer and Forssman glycolipid). Immunohistochemical observation implies that the differences in the hydrophobic moieties specified the localization of glycosphingolipids in the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S (1981)Ann Rev Biochem 50:733–64.

    Google Scholar 

  2. Hakomori S (1990)J Biol Chem 265:18713–16.

    Google Scholar 

  3. Makita A, Taniguchi N (1985) inGlycolipids (Wiegandt H, ed) pp. 1–99. Amsterdam: Elsevier.

    Google Scholar 

  4. Karlsson K-A (1989)Ann Rev Biochem 58:309–50.

    Google Scholar 

  5. Hannun YA, Bell RM (1989)Science 243:500–7.

    Google Scholar 

  6. Nishimura K, Hirabayashi Y, Hamaoka A, Matsumoto M, Nakamura, A, Miseki K (1984)Biochim Biophys Acta 796:269–76.

    Google Scholar 

  7. Nishimira K, Sato E, Nakamura A (1987)J Biochem (Tokyo)101:1315–18.

    Google Scholar 

  8. Nishimura K, Nakamura A (1985)J. Biochem (Tokyo)98:1247–54.

    Google Scholar 

  9. Nishimura K (1987)Comp Biochem Physiol 86B:149–54.

    Google Scholar 

  10. Saito T, Hakomori S (1971)J Lipid Res 12:257–59.

    Google Scholar 

  11. Watanabe K, Arao Y (1981)J Lipid Res 22:1020–24.

    Google Scholar 

  12. Kannagi R, Watanabe K, Hakomori S (1982)Methods Enzymol 138:3–12.

    Google Scholar 

  13. Williams MA, McCluer RH (1980)J Neurochem 35:266–69.

    Google Scholar 

  14. Ciucanu I, Kerek F (1984)Carbohydr Res 131:209–17.

    Google Scholar 

  15. Levery SB, Hakomori S (1982)Methods Enzymol 138:13–25.

    Google Scholar 

  16. Symington FW, Fenderson BA, Hakomori S (1984)Mol Immunol 21:877–82.

    Google Scholar 

  17. Kojima H, Tsuchiya S, Sekiguchi K, Gelinas R, Hakomori S (1987)Biochem Biophys Res Commun 143:716–22.

    Google Scholar 

  18. Fukushi Y, Hakomori S, Nudelman E, Cochran N (1984)J Biol Chem 259:4681–85.

    Google Scholar 

  19. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.

    Google Scholar 

  20. Li S-C, Li Y-T (1970)J Biol Chem 245:5153–60.

    Google Scholar 

  21. Kannagi R, Levery SB, Hakomori S (1984)J Biol Chem 259:84444–51.

    Google Scholar 

  22. Shigeta K, Ito Y, Ogawa T, Kirigata Y, Hakomori S, Kannagi R (1987)J Biol Chem 262:1358–62.

    Google Scholar 

  23. Hemling ME, Yu RK, Sedgwick RD, Rinehart KL (1984)Biochemistry 23:5706–13.

    Google Scholar 

  24. Domon B, Costello CE (1988)Biochemistry 27:1534–43.

    Google Scholar 

  25. Suzuki A, Yamakawa T (1981)J Biochem (Tokyo)90:1541–44.

    Google Scholar 

  26. Breimer ME, Hansson GC, Karlsson K-A, Leffler H (1982)J Biol Chem 257:557–68.

    Google Scholar 

  27. Umesaki H, Takamizawa K, Ohara M (1989)Biochim Biophys Acta 1001:157–62.

    Google Scholar 

  28. Bouhours D, Bouhours J-F (1988)J Biol Chem. 263:15540–45.

    Google Scholar 

  29. Breimer ME, Hansson GC, Leffler H (1985)J Biochem (Tokyo)98:1169–80.

    Google Scholar 

  30. Hara A, Taketomi T (1975)J Biochem (Tokyo)78:527–36.

    Google Scholar 

  31. Bouchon B (1987)Biochem Biophys Res Commun 143:827–31.

    Google Scholar 

  32. Pascher I (1976)Biochim Biophys Acta 455:433–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A.C., Nakamura, A. & Nishimura, K. Molecular species analysis of glycosphingolipids from small intestine of Japanese quail,Coturnix coturnix Japonica by HPLC/FAB/MS. Glycoconjugate J 11, 111–121 (1994). https://doi.org/10.1007/BF00731151

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731151

Keywords

Navigation