Skip to main content
Log in

Ganglioside alterations in YAC-1 cells cultivated in serum-supplemented and serum-free growth medium

  • Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Gangliosides of the ‘GM1b-pathway’ (GM1b and GalNAc-GM1b) have been found to be highly expressed by the mouse T lymphoma YAC-1 grown in serum-supplemented medium, whereas GM2 and GM1 (‘GM1a-pathway’) occurred only in low amounts [Müthing, J., Peter-Katalinić, J., Hanisch, F.-G., Neumann, U. (1991)Glycoconjugate J 8:414–23]. Considerable differences in the ganglioside composition of YAC-1 cells grown in serum-supplemented and in well defined serum-free medium were observed. After transfer of the cells from serum-supplemented medium (RPMI 1640 with 10% fetal calf serum) to serum-free medium (RPMI 1640 with well defined supplements), GM1b and GalNAc-GM1b decreased and only low amounts of these gangliosides could be detected in serum-free growing cells. The expression of GM1a was also diminished but not as strongly as that of GM1b and GalNAc-GM1b. These growth medium mediated ganglioside alterations were reversible, and the original ganglioside expression was achieved by readaptation of serum-free growing cells to the initial serum-supplemented medium. On the other hand, a ‘new’ ganglioside, supposed to represent GalNAc-GD1a and not expressed by serum-supplemented growing cells, was induced during serum-free cultivation, and increased strongly after readaptation. These observations reveal that the ganglioside composition ofin vitro cultivated cells can be modified by the extracellular environment due to different supplementation of the basal growth medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hakomori S (1984) inThe Cell Membrane (Habes, E. ed.) pp. 181–201 New York: Plenum Press.

    Google Scholar 

  2. Müthing J, Schwinzer B, Peter-Katalinić J, Egge H, Mühlradt PF (1989)Biochemistry 28:2923–9.

    Google Scholar 

  3. Yohe HC, Coleman DL, Ryan JL (1985)Biochim Biophys Acta 818:81–6.

    Google Scholar 

  4. Saito M, Nojiri H, Yamada M (1980)Biochem Biophys Res Commun 97:452–62.

    Google Scholar 

  5. Ohsawa T, Nagai Y (1982)Exp Geront 17:287–93.

    Google Scholar 

  6. Ohsawa T (1989)Exp Geront 24:1–9.

    Google Scholar 

  7. Rössner H, Greis C, Rodemann HP (1990)Exp Cell Res 190:161–9.

    Google Scholar 

  8. Kawaguchi T, Takaoka T, Yoshida E, Iwamori M, Takatsuki K, Nagai Y (1988)Exp Cell Res 179:507–16.

    Google Scholar 

  9. Iber H, van Echten G, Klein RA, Sandhoff K (1990)Eur J Cell Biol 52:236–40.

    Google Scholar 

  10. Niimura Y, Ishizuka I (1990)Biochim Biophys Acta 1052:248–54.

    Google Scholar 

  11. Müthing J, Jäger V (1991) 15th International Congress of Biochemistry, Jerusalem, Israel.

  12. Bergelson LD, Dyatlovitskaya EV, Klyuchareva TE, Kryukova EV, Lemenovskaya AF, Matveeva VA, Sinitsyna EV (1989)Eur J Immunol 19:1979–83.

    Google Scholar 

  13. Müthing J, Peter-Katalinić J, Hanisch FG, Neumann U (1991)Glycoconjugate J 8:414:23.

    Google Scholar 

  14. Samoilovich SR, Dugan CB, Macario AJL (1987)J Immunol Methods 101:153–70.

    Google Scholar 

  15. Barnes D (1987)BioTechniques 5:534–42.

    Google Scholar 

  16. Jäger V, Lehmann J, Friedl P (1988)Cytotechnology 1:319–29.

    Google Scholar 

  17. Müthing J, Egge H, Kniep B, Mühlradt PF (1987)Eur J Biochem 163:407–16.

    Google Scholar 

  18. Ueno K, Ando S, Yu RK (1978)J Lipid Res 19:863–71.

    Google Scholar 

  19. Ladisch S, Gillard B (1985)Anal Biochem 146:220–31.

    Google Scholar 

  20. Williams MA, McCluer RH (1980)J Neurochem 35:266–9.

    Google Scholar 

  21. Müthing J, Mühlradt PF (1988)Anal Biochem 173:10–7.

    Google Scholar 

  22. Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T (1980)Eur J Immunol 10:175–80.

    Google Scholar 

  23. Hirabayashi Y, Koketsu K, Higashi H, Suzuki Y, Matsumoto M, Sugimoto M, Ogawa T (1986)Biochim Biophys Acta 876:178–82.

    Google Scholar 

  24. Young WW Jr, MacDonald EMS, Nowinski RC, Hakomori S (1979)J Exp Med 150:1008–19.

    Google Scholar 

  25. Bethke U, Müthing J, Schauder B, Conradt P, Mühlstein PF (1986)J Immunol Methods 89:111–6.

    Google Scholar 

  26. Müthing J, Ziehr H (1990)Biomed Chromatogr 4:70–2.

    Google Scholar 

  27. Magnani JL, Smith DF, Ginsburg V (1980)Anal Biochem 109:399–402.

    Google Scholar 

  28. Nakamura K, Suzuki M, Inagaki F, Yamakawa T, Suzuki A (1987)J Biochem (Tokyo)101:825–35.

    Google Scholar 

  29. Schauer R, Veh RW, Sander M, Corfield AP, Wiegandt H (1980)Adv Exp Med Biol 125:283–94.

    Google Scholar 

  30. Wu G, Ledeen R (1988)Anal Biochem 173:368–75.

    Google Scholar 

  31. Svennerholm L, Mansson JE, Li YT (1973)J Biol Chem 248:740–2.

    Google Scholar 

  32. Cuatrecasas P (1973)Biochemistry 12:3547–58.

    Google Scholar 

  33. Fishman PH, Pacuszka T, Hom B, Moss J (1980)J Biol Chem 255:7657–64.

    Google Scholar 

  34. Otnaess ABK, Laegreid A (1986)Curr Microbiol 13:323–26.

    Google Scholar 

  35. Cumar FA, Maggio B, Caputto R (1982)Mol Cell Biochem 46:155–60.

    Google Scholar 

  36. Holmgren J, Elwing H, Fredman P, Svennerholm L (1980)Eur J Biochem 106:371–9.

    Google Scholar 

  37. Fishman PH (1982)J Membrane Biol 69:85–97.

    Google Scholar 

  38. Fishman PH, Moss J, Richards RL, Brady RO, Alving CR (1979)Biochemistry 18:2562–7.

    Google Scholar 

  39. Laine RA, Hakomori S (1973)Biochem Biophys Res Commun 54:1039–45.

    Google Scholar 

  40. Fishman PH, Moss J, Vaughan M (1976)J Biol Chem 251:4490–4.

    Google Scholar 

  41. Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V (1982)J Biol Chem 257:14365–9.

    Google Scholar 

  42. Tsuchida T, Ravindranath MH, Saxton RE, Irie RF (1987)Cancer Res 47:1278–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abbreviations: BSA, bovine serum albumin GSL(s), glycosphingolipid(s); HPTLC, high-performance thin-layer chromatography; LDL, low density lipoprotein; NeuAc,N-acetylneuraminic acid; NeuGc,N-glycoloylneuraminic acid. The designation of the following glycosphingolipids follows IUPAC-IUB recommendations. GgOse3Cer or gangliotriaosylceramide, GalNAcβ1-4Galβ1-4GlcCer; GgOse4Cer or gangliotetraosylceramide, Galβ1-3GalNAcβ1-4Glaβ1-4GlcCer; GgOse5Cer or gangliopentaosylceramide, GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4GlcCer; GgOse6Cer or gangliohexaosylceramide, Galβ1-3GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4GlcCer or GgOse6Cer; II3NeuAc-GgOse3Cer or GM2; II3NeuAc-GgOse4Cer or GM1 or GM1a; IV3NeuAc-GgOse4Cer or GM1b; IV3NeuAc-GgOse5Cer or GalNAc-GM1b; IV3NeuAc-GgOse6Cer or Gal-GalNAc-GM1b; IV3NeuAc, II3NeuAc-GgOse4Cer or GD1a; II3(NeuAc)2-GgOse4Cer or GD1b; IV3NeuAc, III6NeuAc-GgOse4Cer or GD1a; IV3NeuAc, II3NeuAc-GgOse5Cer or GalNAc-GD1a.

Enzymes: Vibrio cholerae andArthrobacter ureafaciens neuraminidase (EC 3.2.1.18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müthing, J., Pörtner, A. & Jäger, V. Ganglioside alterations in YAC-1 cells cultivated in serum-supplemented and serum-free growth medium. Glycoconjugate J 9, 265–273 (1992). https://doi.org/10.1007/BF00731138

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731138

Keywords

Navigation