Skip to main content
Log in

Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CGN:

cerebellar granule neurons

Ctx-B:

cholera toxin-subunit B

CTRL:

control

ERK1/2:

extracellular signal-regulated protein kinases 1 and 2

FBS:

fetal bovine serum

GM1:

II3Neu5Ac-Gg4Cer, β-Gal-(1–3)-β-GalNAc-(1–4)-[α-Neu5Ac-(2–3)]-β-Gal-(1–4)-β-Glc-Cer

HPTLC:

high-performance silica gel thin-layer chromatography

MAPK:

mitogen-activated protein kinase

NGF:

nerve growth factor

OligoGM1:

GM1-oligosaccharide, II3Neu5Ac-Gg4.

PBS:

phosphate-buffered saline

P-ERK1/2:

phosphorylated ERK1/2

P-TrkA:

phosphorylated TrkA

PM:

plasma membrane

PVDF:

polyvinylidene difluoride

RRID:

Research Resource Identifiers

Trk:

neurotrophin tyrosin kinase receptor

Tyr490:

tyrosine 490

References

  1. IUPAC-IUMB JCoBN: Nomenclature of glycolipids. Carbohydr. Res. 312, 167–175 (1998)

    Article  Google Scholar 

  2. Ledeen, R., Wu, G.: Gangliosides of the nervous system. In: Sonnino, S., Prinetti, A. (eds.) Gangliosides. Methods in Molecular Biology, pp. 19–55. Humana Press, New York (2018)

    Google Scholar 

  3. Aureli, M., Mauri, L., Ciampa, M.G., Prinetti, A., Toffano, G., Secchieri, C., Sonnino, S.: GM1 ganglioside: past studies and future potential. Mol. Neurobiol. 53, 1824–1842 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Dreyfus, H., Louis, J.C., Harth, S., Mandel, P.: Gangliosides in cultured neurons. Neuroscience. 5, 1647–1655 (1980)

    Article  CAS  PubMed  Google Scholar 

  5. Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S., Yu, R.K.: Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J. Neurochem. 103, 2327–2341 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Svennerholm, L., Boström, K., Fredman, P., Månsson, J.E., Rosengren, B., Rynmark, B.M.: Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim. Biophys. Acta. 1005, 109–117 (1989)

    Article  CAS  PubMed  Google Scholar 

  7. Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides as components of lipid membrane domains. Glycobiology. 17, 1R–13R (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Furukawa, K., Ohmi, Y., Ohkawa, Y., Tokuda, N., Kondo, Y., Tajima, O., Furukawa, K.: Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem. Res. 36, 1578–1586 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Sandhoff, R., Schulze, H., Sandhoff, K.: Ganglioside metabolism in health and disease. Prog. Mol. Biol. Transl. Sci. 156, 1–62 (2018)

    Article  PubMed  CAS  Google Scholar 

  10. Ledeen, R.W., Wu, G.: The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40, 407–418 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Schengrund, C.L.: Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 40, 397–406 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Mocchetti, I.: Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell. Mol. Life Sci. 62, 2283–2294 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Rabin, S.J., Mocchetti, I.: GM1 ganglioside activates the high-affinity nerve growth factor receptor TrkA. J. Neurochem. 65, 347–354 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Mutoh, T., Tokuda, A., Miyadai, T., Hamaguchi, M., Fujiki, N.: Ganglioside GM1 binds to the Trk proteins and regulates receptor function. Proc. Natl. Acad. Sci. 92, 5087–5091 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schengrund, C.L., Prouty, C.: Oligosaccharide portion of GM1 enhances process formation by S20Y neuroblastoma cells. J. Neurochem. 51, 277–282 (1988)

    Article  CAS  PubMed  Google Scholar 

  16. Fantini, J., Yahi, N.: Lipid regulation of receptor function. In: Fantini, J., Yahi, N. (eds.) Brain Lipids in Synaptic Function and Neurological Disease, pp. 163–181. Elsevier, San Diego (2015)

    Chapter  Google Scholar 

  17. Chiricozzi, E., Pomè, Y.D., Maggioni, M., Di Biase, E., Parravicini, C., Palazzolo, L., Loberto, N., Eberini, I., Sonnino, S.: Role of GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J. Neurochem. 143, 645–659 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Chiricozzi, E., Di Biase, E., Maggioni, M., Lunghi, G., Fazzari, M., Pomè, Y.D., Casellato, R., Loberto, N., Mauri, L., Sonnino, S.: GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J. Neurochem. 149, 231–241 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Chiricozzi, E., Mauri, L., Lunghi, G., Di Biase, E., Fazzari, M., Maggioni, M., Valsecchi, M., Prioni, S., Loberto, N., Pomè, D.Y., Ciampa, M.G., Fato, P., Verlengia, G., Cattaneo, S., Assini, R., Wu, G., Alselehdar, S., Ledeen, R.W., Sonnino, S.: Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model. Sci. Rep. 9, 19330 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tettamanti, G., Bonali, F., Marchesini, S., Zambotti, V.: A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim. Biophys. Acta. 296, 160–170 (1973)

    Article  CAS  PubMed  Google Scholar 

  21. Acquotti, D., Cantu, L., Ragg, E., Sonnino, S.: Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur. J. Biochem. 225, 271–288 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Koul, O., Prada-Maluf, M., McCluer, R.H., Ullman, M.D.: Rapid isolation of monosialogangliosides from bovine brain gangliosides by selective-overload chromatography. J. Lipid Res. 32, 1712–1715 (1991)

    Article  CAS  PubMed  Google Scholar 

  23. Sonnino, S., Nicolini, M., Chigorno, V.: Preparation of radiolabeled gangliosides. Glycobiology. 6, 479–487 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Wiegandt, H., Bucking, H.W.: Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney. Eur. J. Biochem. 15, 287–292 (1970)

    Article  CAS  PubMed  Google Scholar 

  25. Chiricozzi, E., Maggioni, M., Di Biase, E., Lunghi, G., Fazzari, M., Loberto, N., Maffioli, E., Grassi Scalvini, F., Tedeschi, G., Sonnino, S.: The Neuroprotective role of the GM1 oligosaccharide, II3Neu5Ac-Gg4, in Neuroblastoma cells. Mol. Neurobiol. 56, 6673–6702 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. Bilimoria, P. M., Bonni, A.: Cultures of cerebellar granule neurons. CSH Protoc. 2008:pdb.prot5107

  27. Chigorno, V., Pitto, M., Cardace, G., Acquotti, D., Kirschner, G., Sonnino, S., Ghidoni, R., Tettamanti, G.: (1985) Association of gangliosides to fibroblasts in culture: a study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoco. J. 2, 279–291 (2008)

  28. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods. 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Cardani, S., Di Lascio, S., Belperio, D., Di Biase, E., Ceccherini, I., Benfante, R., Fornasari, D.: Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells. Exp. Cell Res. 370, 671–679 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. Fazzari, M., Frasca, A., Bifari, F., Landsberger, N.: Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity. RNA Biol. 16, 1414–1423 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prinetti, A., Prioni, S., Chiricozzi, E., Schuchman, E.H., Chigorno, V., Sonnino, S.: Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem. Res. 36, 1654–1668 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Chiricozzi, E., Niemer, N., Aureli, M., Magini, A., Loberto, N., Prinetti, A., Bassi, R., Polchi, A., Emiliani, C., Caillaud, C., Sonnino, S.: Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on bhexosaminidase activity in Sandhoff fibroblasts. Mol. Neurobiol. 50, 159–167 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Samarani, M., Loberto, N., Soldà, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F.A., Mauri, L., Ciampa, M.G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S.: A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J. 32, 5685–5702 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malekkou, A., Samarani, M., Drousiotou, A., Votsi, C., Sonnino, S., Pantzaris, M., Chiricozzi, E., Zamba-Papanicolaou, E., Aureli, M., Loberto, N., Christodoulou, K.: Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. Int. J. Mol. Sci. 19, 3099 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  35. Loberto, N., Lunghi, G., Schiumarini, D., Samarani, M., Chiricozzi, E., Aureli, M.: Methods for assay of Ganglioside catabolic enzymes. In: Sonnino, S., Prinetti, A. (eds.) Gangliosides. Methods in Molecular Biology Pp. 383–400. Humana Press, New York (2018)

    Google Scholar 

  36. Folch, J., Lees, M., Sloane Stanley, G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Article  CAS  PubMed  Google Scholar 

  37. Scandroglio, F., Loberto, N., Valsecchi, M., Chigorno, V., Prinetti, A., Sonnino, S.: Thin layer chromatography of gangliosides. Glycoconj. J. 26, 961–973 (2008)

    Article  CAS  Google Scholar 

  38. Wu, G., Ledeen, W.R.: Quantification of gangliotetraose gangliosides with cholera toxin. Anal. Biochem. 173, 368–375 (1988)

    Article  CAS  PubMed  Google Scholar 

  39. Valaperta, R., Valsecchi, M., Rocchetta, F., Aureli, M., Prioni, S., Prinetti, A., Chigorno, V., Sonnino, S.: Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J. Neurochem. 100, 708–719 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Chiricozzi, E., Mauri, L., Ciampa, M.G., Prinetti, A., Sonnino, S.: On the use of cholera toxin. Glycoconj. J. 35, 161–163 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R., Tettamanti, G.: Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem. 42, 299–305 (1984)

    Article  CAS  PubMed  Google Scholar 

  42. Kappagantula, S., Andrews, M.R., Cheah, M., Abad-Rodriguez, J., Dotti, C.G., Fawcett, J.W.: Neu3 sialidase-mediated ganglioside conversion is necessary for axon regeneration and is blocked in CNS axons. J. Neurosci. 34, 2477–2492 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tucker, B.A., Rahimtula, M., Mearow, K.M.: Src and FAK are key early signalling intermediates required for neurite growth in NGF-responsive adult DRG neurons. Cell. Signal. 20, 241–257 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Carragher, N.O., Frame, M.C.: Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241–249 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. Stevens, G.R., Zhang, C., Berg, M.M., Lambert, M.P., Barber, K., Cantallops, I., Routtenberg, A., Klein, W.L.: CNS neuronal focal adhesion kinase forms clusters that co-localize with vinculin. J. Neurosci. Res. 46, 445–455 (1996)

    Article  CAS  PubMed  Google Scholar 

  46. Albertinazzi, C., Gilardelli, D., Paris, S., Longhi, R., de Curtis, I.: Overexpression of a neural-specific rho family GTPase, cRac1B, selectively induces enhanced neuritogenesis and neurite branching in primary neurons. J. Cell Biol. 142, 815–825 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corbetta, S., Gualdoni, S., Ciceri, G., Monari, M., Zuccaro, E., Tybulewicz, V.L., de Curtis, I.: Essential role of Rac1 and Rac3 GTPases in neuronal development. FASEB J. 23, 1347–1357 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Marano, N., Tettamanti, G., Sonnino, S.: Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276, 21136–21145 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. Aureli, M., Samarani, M., Murdica, V., Mauri, L., Loberto, N., Bassi, R., Prinetti, A., Sonnino, S.: Gangliosides and cell surface ganglioside glycohydrolases in the nervous system. Adv Neurobiol. 9, 223–244 (2014)

    Article  PubMed  Google Scholar 

  50. Aureli, M., Loberto, N., Lanteri, P., Chigorno, V., Prinetti, A., Sonnino, S.: Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J. Neurochem. 116, 891–899 (2011)

    Article  CAS  PubMed  Google Scholar 

  51. Van Echten-Deckert, G., Herget, T.: Sphingolipid metabolism in neural cells. Biochim. Biophys. Acta. 1758, 1978–1994 (2006)

    Article  PubMed  CAS  Google Scholar 

  52. Yu, R., Ariga, T., Yanagisawa, M., Zeng, G.: Gangliosides in the nervous system: biosynthesis and degradation. In: Fraser-Reid, B.O., Tatsuta, K., Thiem, J. (eds.) Glycoscience, Pp. 1671–1695 Springer. Heidelberg, Berlin (2008)

    Google Scholar 

  53. Manev, H., Favaron, M., Vicini, S., Guidotti, A., Costa, E.: Glutamate-induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. J. Pharmacol. Exp. Ther. 252, 419–427 (1990)

    CAS  PubMed  Google Scholar 

  54. Costa, E., Armstrong, D., Guidotti, A., Kharlamov, A., Kiedrowski, L., Wroblewski, J.T.: Ganglioside GM1 and its semisynthetic lysogangliosides reduce glutamate neurotoxicity by a novel mechanism. Adv. Exp. Med. Biol. 341, 129–141 (1993)

    Article  CAS  PubMed  Google Scholar 

  55. Kharlamov, A., Guidotti, A., Costa, E., Hayes, R., Armstrong, D.: Semisynthetic sphingolipids prevent protein kinase C translocation and neuronal damage in the perifocal area following a photochemically induced thrombotic brain cortical lesion. SJ Neurosci. 13, 2483–2494 (1993)

    Article  CAS  Google Scholar 

  56. Saito, M., Saito, M., Berg, M.J., Guidotti, A., Marks, N.: Gangliosides attenuate ethanol-induced apoptosis in rat cerebellar granule neurons. Neurochem. Res. 24, 1107–1115 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Rabin, S.J., Bachis, A., Mocchetti, I.: Gangliosides activate Trk receptors by inducing the release of neurotrophins. J. Biol. Chem. 277, 49466–49472 (2002)

    Article  CAS  PubMed  Google Scholar 

  58. Wu, G., Lu, Z.H., Xie, X., Ledeen, R.W.: Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: rescue by GM1 and LIGA20. Glycoconj. J. 21, 305–313 (2004)

    Article  CAS  PubMed  Google Scholar 

  59. Wu, G., Lu, Z.H., Wang, J., Wang, Y., Xie, X., Meyenhofer, M.F., Ledeen, R.W.: Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J. Neurosci. 25, 11014–11022 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hadaczek, P., Wu, G., Sharma, N., Ciesielska, A., Bankiewicz, K., Davidow, A.L., Lu, Z.H., Forsayeth, J., Ledeen, R.W.: GDNF signaling implemented by GM1 ganglioside; failure in Parkinson's disease and GM1-deficient murine model. Exp. Neurol. 263, 177–189 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. Farooqui, T., Franklin, T., Pearl, D.K., Yates, A.J.: Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J. Neurochem. 68, 2348–2355 (1997)

    Article  CAS  PubMed  Google Scholar 

  62. Singleton, D.W., Lu, C.L., Colella, R., Roisen, F.J.: Promotion of neurite outgrowth by protein kinase inhibitors and ganglioside GM1 in neuroblastoma cells involves MAP kinase ERK1/2. Int. J. Dev. Neurosci. 18, 797–805 (2000)

    Article  CAS  PubMed  Google Scholar 

  63. Duchemin, A.M., Ren, Q., Mo, L., Neff, N.H., Hadjiconstantinou, M.: GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J. Neurochem. 81, 696–707 (2002)

    Article  CAS  PubMed  Google Scholar 

  64. Da Silva, J.S., Hasegawa, T., Miyagi, T., Dotti, C.G., Abad-Rodriguez, J.: Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat. Neurosci. 8, 606–615 (2005)

    Article  PubMed  CAS  Google Scholar 

  65. Zakharova, I.O., Sokolova, T.V., Vlasova, Y.A., Furaev, V.V., Rychkova, M.P., Avrova, N.F.: GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem. Res. 39, 2262–2275 (2014)

    Article  CAS  PubMed  Google Scholar 

  66. Limpert, A.S., Karlo, J.C., Landreth, G.E.: Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol. Cell. Biol. 27, 5686–5589 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Navarro, A.I., Rico, B.: Focal adhesion kinase function in neuronal development. Curr. Opin. Neurobiol. 27, 89–95 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. Armendáriz, B.G., Masdeu Mdel, M., Soriano, E., Ureña, J.M., Burgaya, F.: The diverse roles and multiple forms of focal adhesion kinase in brain. Eur. J. Neurosci. 40, 3573–3590 (2014)

    Article  PubMed  Google Scholar 

  69. Bolis, A., Corbetta, S., Cioce, A., de Curtis, I.: Differential distribution of Rac1 and Rac3 GTPases in the developing mouse brain: implications for a role of Rac3 in Purkinje cell differentiation. Eur. J. Neurosci. 18, 2417–2424 (2003)

    Article  PubMed  Google Scholar 

  70. De Curtis, I.: Roles of Rac1 and Rac3 GTPases during the development of cortical and hippocampal GABAergic interneurons. Front. Cell. Neurosci. 8, 307 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lütteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of Glycans. Glycobiology. 25, 1323–1324 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2015-2016 contract from FIDIA s.p.a in favor to S.S. and by University of Milan departmental funds Fond PSR2017_RONDELLI-CHIRICOZZI to E.C.

The authors acknowledge Euro-BioImaging (www.eurobioimaging.eu) for providing access to imaging technologies and services via the Italian Node (ALEMBIC, Milano, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Chiricozzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

This figure shows the contrast phase images of one week of OligoGM1 treated or not CGN. This figure shows the frame images of the time laps acquisition of OligoGM1 treated or not CGN. (PDF 1185 kb)

ESM 2

Video clip shows the entire video of 24 h time laps analysis of untreated CGN (CTRL). (MP4 8965 kb)

ESM 3

Video clip shows the entire video of 24 h time laps analysis of OligoGM1 treated CGN. (MP4 9257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Biase, E., Lunghi, G., Fazzari, M. et al. Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconj J 37, 329–343 (2020). https://doi.org/10.1007/s10719-020-09919-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09919-x

Keywords

Navigation