Skip to main content
Log in

Correlation effects and BCS physics in high-T c superconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Available experimental data undoubtedly show that the gross features of BCS physics manifest themselves in all known high-T c superconductors. It seems also that the strong-coupling version of BCS theory provides a reliable description of the superconductivity at least in some of these materials. On the other hand, the lack of correlation effects even in the language of the mentioned approach excludes the possibility of discussing in this framework a physical aspect of the problem: “Why is theT c high?” A necessary extension of the Fermi-liquid phenomenology based on the Luttinger-Ward (LW) sum rule is proposed, and it is shown that there exists a very natural measure of correlations which allows one to specify the correlated state favorable for superconductivity. This state is essentially metallic with respect to its low-energy excitation spectrum and, moreover, the residual Coulomb interaction is suppressed. The electron-phonon interaction not only survives, but can be sufficiently strong to provide highT c . The LW sum rule fails in the superconducting state, which imposes a certain restriction on the possibility of using the BCS physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz and K. A. Müller,Z. Phys. B 64, 189 (1986).

    Google Scholar 

  2. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott,Nature (London) 363, 56 (1993).

    Google Scholar 

  3. R. J. Cavaet al., Nature (London) 332, 814 (1988).

    Google Scholar 

  4. K. Holczer,Int. J. Mod. Phys. B 6, 3967 (1992).

    Google Scholar 

  5. H. R. Krishnamurthy and A. K. Sood,Rev. Solid State Sci. 5, 587 (1991).

    Google Scholar 

  6. J. C. Phillips,Physics of High-T c Superconductors (Academic Press, San Diego, 1989).

    Google Scholar 

  7. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye,Phys. Rev. Lett. 70, 2126 (1993).

    Google Scholar 

  8. N. F. Mott,Proc. Phys. Soc. 62, 416 (1949);Philos. Mag. 6, 287 (1961).

    Google Scholar 

  9. J. M. Luttinger and J. C. Ward,Phys. Rev. 118, 1417 (1960); J. M. Luttinger,Phys. Rev. 119, 1153 (1960).

    Google Scholar 

  10. W. F. Brinkman and T. M. Rice,Phys. Rev. B 2, 4302 (1970).

    Google Scholar 

  11. P. W. Anderson,Phys. Rev. Lett. 64, 1839 (1990).

    Google Scholar 

  12. A. A. Abrikosov,J. Exp. Theor. Phys. (USSR) 43, 1083 (1962);Sov. Phys. JETP 16, 765 (1963).

    Google Scholar 

  13. G. M. Eliashberg inElectronic Properties of High-T c Superconductors, H. Kuzmany, M. Mehring, and J. Fink, eds., Springer Series in Solid State Science, Vol. 113 (Springer-Verlag, Berlin, 1993), p. 385.

    Google Scholar 

  14. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii,Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, Oxford, 1965).

    Google Scholar 

  15. L. D. Landau,J. Exp. Theor. Phys. (USSR) 30, 1058 (1956);Sov. Phys. JETP 3, 920 (1957).

    Google Scholar 

  16. D. S. Greywall,Phys. Rev. B 27, 2747 (1983).

    Google Scholar 

  17. K. Seiler, C. Gros, T. M. Rice, K. Ueda, and D. Vollhardt,J. Low Temp. Phys. 64, 195 (1986).

    Google Scholar 

  18. A. B. Migdal,J. Exp. Theor. Phys. (USSR) 34, 1438 (1958);Sov. Phys. JETP 7, 996 (1958).

    Google Scholar 

  19. A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaki, S. Uchida, K. Takgahara, and F. M. F. de Groot,Phys. Rev. Lett. 69, 1796 (1992).

    Google Scholar 

  20. J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  21. I. Giaever,Phys. Rev. Lett. 5, 147 (1960).

    Google Scholar 

  22. W. L. McMillan and J. M. Rowell, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 1.Chap. 11.

    Google Scholar 

  23. L. Y. L. Shen,Phys. Rev. Lett. 29, 1082 (1972).

    Google Scholar 

  24. Q. Huang, J. F. Zasadzinski, N. Tralshawala, K. E. Gray, D. G. Hinks, Y. L. Peng, and R. L. Greene,Nature (London) 347, 369 (1990).

    Google Scholar 

  25. Zhe Zhang, Cia-Chun Chen, Stephen P. Kelty, Jongjie Dai, and Charles M. Lieber,Nature (London) 353, 333 (1991).

    Google Scholar 

  26. S. I. Vedeneev, P. Samuely, S. V. Meshkov, G. M. Eliashberg, A. G. M. Jansen, and P. Wyder,Physica C 198, 47 (1992).

    Google Scholar 

  27. D. Mandrus, L. Forro, D. Koller, and L. Mihaly,Nature (London) 351, 460 (1991).

    Google Scholar 

  28. Zhe Zhang and Charles M. Lieber,Phys. Rev. 47, 3423 (1993).

    Google Scholar 

  29. L. P. Gor'kov,J. Exp. Theor. Phys. (USSR) 34, 735 (1958);Sov. Phys. JETP 7, 505 (1958).

    Google Scholar 

  30. Y. Nambu,Phys. Rev. 177, 648 (1960).

    Google Scholar 

  31. G. M. Eliashberg,J. Exp. Theor. Phys. (USSR) 38, 966 (1960);39, 1437 (1960);Sov. Phys. JETP 11, 696 (1960);12, 1000 (1961).

    Google Scholar 

  32. G. M. Eliashberg,J. Exp. Theor. Phys. (USSR) 43, 1005 (1962);Sov. Phys. JETP 16, 780 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliashberg, G.M. Correlation effects and BCS physics in high-T c superconductors. J Supercond 7, 525–530 (1994). https://doi.org/10.1007/BF00728453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728453

Keywords

Navigation