Skip to main content
Log in

The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The contractile, histochemical, morphological and electrophysiological properties of two rat laryngeal muscles, the cricothyroid and posterior cricoarytenoid, have been measured. Both muscles act during respiration to maintain upper airway patency and an even distribution of air in the lungs. The cricothyroid and posterior cricoarytenoid are fast-twitch muscles, having contraction times of 3.4 and 7.2 ms respectively, high myosin ATPase activity, abundant sarcoplasmic reticulum (with average volumes of 9% and 15%, respectively, of the fibre volume) and T-system membrane (with average areas of 0.4 and 0.5 µm2 µ−3 of fibre). The large areas of T-tubule membrane are reflected in the average specific membrane capacities of 6.5 µF cm−2 to 10.5 µF cm−2, which are high considering the small diameter of the fibres (20–30 µm). Of the two muscles, the posterior cricoarytenoid has the faster contraction time and the more abundant sarcoplasmic reticulum content. In addition, the posterior cricoarytenoid is less resistant to fatigue and demonstrates lower succinic dehydrogenase activity. The fatigability of this muscle, coupled with its general lack of functional reserve, suggest that its failure may contribute to upper airway obstruction during respiratory distress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADRIAN, R. H. & ALMERS, W. (1974) Membrane capacity measurements on frog skeletal muscle in media of low ion content.J. Physiol. 237, 573–605.

    Google Scholar 

  • BACH-Y-RITA, P. & ITO, F. (1966)In vivo studies on fast and slow muscle fibres in cat extraocular muscles.J. gen. Physiol. 49, 1177–98.

    Google Scholar 

  • BARILLOT, J. C. & BIANCHI, A. L. (1971) Activité des motoneurones laryngés pendant les réflexes de Hering-Breuer.J. Physiol. 63, 783–92.

    Google Scholar 

  • BARILLOT, J. C. & DUSSARDIER, M. (1973) Modalités de décharge des motoneurones laryngés inspiratoires dans diverses conditions experimentales.J. Physiol. 66, 593–629.

    Google Scholar 

  • BERENDES, J. & VOGELL, W. (1960) Laryngeal muscles in the electron microscope picture.Arch. Ohr Nas Kehlkopfheclk 176, 730–5.

    Google Scholar 

  • BURKE, R. E. & EDGERTON, V. R. (1975) Motor unit properties and selective involvement in movement.Exercise Sports Sci. Rev. 3, 31–81.

    Google Scholar 

  • CAMPBELL, E. J. M. & NEWSOME-DAVIS, J. (1970) Muscles of the larynx and thyroid cartilage. InThe Respiratory Muscles (edited by CAMPBELL, E. J. M., AGOSTONI, E. and NEWSOME-DAVIS, J.), pp. 194–204, London: Lloyd-Luke Ltd.

    Google Scholar 

  • CLOSE, R. I. (1972) Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.

    Google Scholar 

  • DAVEY, D. F., DULHUNTY, A. F. & FATKIN, D. (1980) Glycerol treatment in mammalian skeletal muscle.J. membr. Biol. 53, 223–33.

    Google Scholar 

  • DAVEY, D. F., DUNLOP, C., HOH, J. Y. F. & WONG, S. Y. P. (1981) Contractile properties and ultrastructure of extensor digitorum longus and soleus muscles in spinal chord transected rats.Aust. J. exp. Biol. Med. Sci. 59, 393–404.

    Google Scholar 

  • DAVEY, D. F. & O'BRIEN, G. M. (1978) The sarcoplasmic reticulum and T-system of rat extensor digitorum longus muscles exposed to hypertonic solutions.Aust. J. exp. Biol. Med. Sci. 56, 409–19.

    Google Scholar 

  • DAVEY, D. F. & WONG, S. Y. P. (1980) Morphometric analysis of rat extensor digitorum longus and soleus muscles.Aust. J. exp. Biol. Med. Sci. 58, 213–30.

    Google Scholar 

  • DUCHEN, L. W. (1971) An electron microscope comparison of motor end plates of slow and fast skeletal muscle fibres of the mouse.J. Neurol. Sci. 14, 37–45.

    Google Scholar 

  • DULHUNTY, A. F. (1979) Electrical and mechanical properties of dystrophic C57BL mouse muscle. InNerve Muscle and Brain Degeneration (edited by KIDMAN, A. D. and TOMPKINS, J. K.), Vol. 473, pp. 153–166. Amsterdam: Excerpta Medica.

    Google Scholar 

  • DULHUNTY, A. F. (1980) Potassium contractures and mechanical activation in mammalian skeletal muscle.J. membr. Biol. 57, 223–33.

    Google Scholar 

  • DULHUNTY, A. F. & DLUTOWSKI, M. (1979) Fiber types in red and white segments of rat sternomastoid muscle.Am. J. Anat. 156, 51–61.

    Google Scholar 

  • DULHUNTY, A. F. & FRANZINI-ARMSTRONG, C. (1977) The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths.J. Physiol. 266, 687–711.

    Google Scholar 

  • EDSTRÖM, L. & LINDQUIST, C. (1973) Histochemical fibre composition of some facial muscles in the cat in relation to their contraction properties.Acta physiol. scand. 89, 491–503.

    Google Scholar 

  • EDSTRÖM, L., LINDQUIST, C. & MARTENSSON, A. (1974) InVentilatory and Phonatory Control Systems (edited by WYKE, B.), pp. 392–407. Oxford: Oxford University Press.

    Google Scholar 

  • EISENBERG, B. & KUDA, A. M. (1975) Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig.J. Ultrastruct. Res. 51, 176–87.

    Google Scholar 

  • EISENBERG, B. & KUDA, A. M. (1976) Discrimination between fibre populations in mammalian skeletal muscle by using ultrastructural parameters.J. Ultrastruct. Res. 54, 76–88.

    Google Scholar 

  • EISENBERG, B., KUDA, A. M. & PETER, J. B. (1974) Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig.J. Cell Biol. 60, 732–54.

    Google Scholar 

  • EISENBERG, B. & MOBLEY, B. A. (1975) Size changes in single muscle fibres during fixation and embedding.Tiss. Cell 7, 383–7.

    Google Scholar 

  • ELLISMAN, M. H., RASH, J. E., STAEHELIN, L. A. & PORTER, K. R. (1976) Studies of excitable membranes. II. A comparison of specialisations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibres.J. Cell Biol. 68, 752–74.

    Google Scholar 

  • FATT, P. & KATZ, B. (1951) Analysis of end plate potential recorded with intracellular electrode.J. Physiol. 115, 320–70.

    Google Scholar 

  • FAWCETT, D. W. & REVEL, J. P. (1961) The sarcoplasmic reticulum of a fast-acting fish muscle.J. Biophys. Biochem. Cytol. 10, 89–109.

    Google Scholar 

  • FINK, B. R. (1975)The Human Larynx. pp. 53–84. New York: Raven Press.

    Google Scholar 

  • FRANZINI-ARMSTRONG, C. (1974) Membrane systems in muscle fibres. InThe Structure and Function of Muscle, Vol. 2 (edited by BOURNE, E.), pp. 532–613. London, New York: Academic Press.

    Google Scholar 

  • FUKUDA, H., SASAKI, C. T. & KIRCHNER, J. A. (1973) Vagal afferent influences on the phasic activity of the posterior cricoarytenoid muscle.Acta otolaryngol. 75, 112–8.

    Google Scholar 

  • GAGE, P. W. & EISENBERG, R. S. (1969) Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibres.J. gen. Physiol. 53, 265–77.

    Google Scholar 

  • GAUTHIER, G. F. (1974) Some ultrastructural and cytochemical features of fibre populations in the soleus muscle.Anat. Rec. 180, 551–63.

    Google Scholar 

  • GAUTHIER, G. F. & PADYKULA, H. A. (1966) Cytological studies of fibre types in skeletal muscle. A comparative study of the mammalian diaphragm.J. Cell Biol. 28, 333–54.

    Google Scholar 

  • GOLDSPINK, G. (1971) Changes in striated muscle fibres during contraction and growth with particular reference to myofibril splitting.J. Cell. Sci. 9, 123–37.

    Google Scholar 

  • GOLDSTEIN, M. A. (1969) A morphological and cytochemical study of sarcoplasmic reticulum and T-system of fish extraocular muscle.Z. Zellforsch. 102, 31–9.

    Google Scholar 

  • GUILLEMINAULT, C. & DEMENT, W. C. (1978) (editors)Sleep Apnea Syndromes. p. 130 New York: Alan Liss.

    Google Scholar 

  • HALL-CRAGGS, E. C. B. (1968) The contraction times and enzyme activity of two rabbit laryngeal muscles.J. Anat. 102, 241–55.

    Google Scholar 

  • HAST, M. H. (1966) Mechanical properties of the cricothyroid muscle.Laryngoscope 76, 537–48.

    Google Scholar 

  • HAST, M. H. (1967a) Mechanical properties of the vocal fold muscle.Pract. oto-rhino-laryng. 29, 53–6.

    Google Scholar 

  • HAST, M. H. (1967b) The respiratory muscle of the larynx.Ann. Otol. Rhinol. Laryngol. 76, 489–97.

    Google Scholar 

  • HIROSE, H., USHIJIMA, T., KOBAYASH, T. & SAWASHUM, M. (1969) An experimental study of the contraction properties of the laryngeal muscles in the cat.Ann. Otol. Rhinol. Laryngol. 78, 297–306.

    Google Scholar 

  • HODGKIN, A. L. & NAKAJIMA, S. (1972) Analysis of the membrane capacity in frog muscle.J. Physiol. 221, 121–36.

    Google Scholar 

  • HODGKIN, A. L. & RUSHTON, W. A. H. (1946) The electrical constants of a crustacean nerve fibre.Proc. R. Soc. 153, 444–79.

    Google Scholar 

  • HORIUCHI, M. & SASAKI, C. T. (1978) Cricothyroid muscle in respiration.Ann. Otol. Rhinol. Laryngol. 87, 386–91.

    Google Scholar 

  • KARLSSON, U. & SCHULTZ, R. L. (1965) Fixation of the central nervous system from electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetrachloride with special reference to membranes and the extracellular space.J. Ultrastruct. Res. 12, 160–86.

    Google Scholar 

  • KHAN, M. A., PAPADIMITRIOU, J. M., HOLT, P. G & KAKULAS, B. A. (1972) A calcium-citro-phosphate technique for the histochemical localization of myosin ATPase.Stain Technol. 47, 277–81.

    Google Scholar 

  • KILARSKI, W. (1967) The fine structure of straited muscles in teleosts.Z. Zellforsch. 79, 562–80.

    Google Scholar 

  • KILARSKI, W. & BAGAJ, J. (1969) Organisation and fine structure of extraocular muscles in Carissius and Rana.Z. Zellforsch. 94, 194–204.

    Google Scholar 

  • KONRAD, H. R. & RATTENBORG, C. C. (1969) Combined action of laryngeal muscles.Acta otolaryngol. 67, 646–9.

    Google Scholar 

  • KOTBY, M. N. & HAUGEN, L. K. (1970) Critical evaluation of the action of the posterior crico-arytenoid muscle, utilizing direct EMG-study.Acta otolaryngol. 70, 260–8.

    Google Scholar 

  • LANDON, D. N. (1970) The influence of fixation upon the fine structure of the Z-disk of rat striated muscle.J. Cell Sci. 6, 257–76.

    Google Scholar 

  • LINDQUIST, C. (1973) Contraction properties of cat facial muscles.Acta physiol. scand. 89, 482–90.

    Google Scholar 

  • LOO, D. & VAUGHAN, P. C. (1976) Muscle fibre capacity in low conductivity solution.Can. J. Physiol. Pharmacol. 54, 107–12.

    Google Scholar 

  • LUFF, A. & ATWOOD, H. L. (1972) Membrane properties and contraction of single muscle fibers in the mouse.Am. J. Physiol. 222, 1435–40.

    Google Scholar 

  • MARTENSSON, A. (1968) The functional organisation of the intrinsic laryngeal muscles.Ann. N.Y. Acad. Sci. 155, 91–7.

    Google Scholar 

  • MARTENSSON, A. & SKOGLUND, C. R. (1964) Contraction properties of intrinsic laryngeal muscles.Acta physiol. scand. 60, 318–36.

    Google Scholar 

  • NACHLAS, M. M., KWAN-CHUNG, T., DE ZOUZA, E., CHAO-SHING, C. & SELIGMAN, A. M. (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a newp-nitrophenyl substituted ditetrazole.J. Histochem. Cytochem. 5, 420–37.

    Google Scholar 

  • PADYKULA, H. A. & GAUTHIER, G. F. (1970) The ultrastructure of the neuromuscular junctions of mammalian red, white and intermediate skeletal muscle fibers.J. Cell Biol. 46, 27–41.

    Google Scholar 

  • PEACHEY, L. D. & SCHILD, R. F. (1968) The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles.J. Physiol. 194, 249–58.

    Google Scholar 

  • REGER, J. F. (1961) The fine structure of neuromuscular junctions and the sarcoplasmic reticulum of extrinsic eye muscles ofFundulus heteroclitus.J. Biophys. Biochem. Cytol. 10, Suppl., 111–21.

    Google Scholar 

  • REVEL, J. P. (1962) The sarcoplasmic reticulum of the bat cricothyroid muscle.J. Cell Biol. 12, 571–88.

    Google Scholar 

  • ROSSI, G., SARTORIS, A., RAVIZZA, L., URCINDI, R. & FRA, R. (1962) The effects of a rapidly eliminated barbiturate [5-(1-methylbutyl)-5-ethyl-2-thiobarbituric acid sodium salt],d-tubocurarine and succinylcholine chloride on the laryngeal intrinsic musculature. Experimental electromyographic research.Minerva Otorinolaryng. 12, 236–40.

    Google Scholar 

  • RUDOMIN, P. (1966) The electrical activity of the cricothyroid muscles of the cat.Arch. Int. Physiol. 74, 135–53.

    Google Scholar 

  • RUSKELL, G. L. (1978) The fine structure of innervated myotendinous cylinders in extraocular muscles of rhesus monkeys.J. Neurocytol. 7, 693–708.

    Google Scholar 

  • SEYMOUR, J. C. & HENRY, H. S. (1954) Some experimental observations on innervation of larynx in cats.J. Laryngol. Otol. 68, 225–8.

    Google Scholar 

  • SHERREY, J. H. & MEGIRIAN, D. (1977) State dependence of upper airway respiratory motoneurons: functions of the cricothyroid and nasolabial muscles of the unanaesthetized rat.Electroenceph. clin. Neurophysiol. 43, 218–28.

    Google Scholar 

  • SHERREY, J. H. & MEGIRIAN, D. (1980) Respiratory EMG activity of the posterior cricoarytenoid, cricothyroid and diaphragm muscles during sleep.Resp. Physiol. 39, 355–65.

    Google Scholar 

  • SUZUKI, M., KIRCHNER, J. A. & MURAKAMI, Y. (1970) The cricothyroid as a respiratory muscle. Its characteristics in bilateral recuttent laryngeal nerve paralysis.Ann. Otol. Rhinol. Laryngol. 79, 976–83.

    Google Scholar 

  • VENABLE, J. H. & COGGESHALL, R. (1965) A simplified lead citrate stain for use in electron microscopy.J. Cell Biol. 25, 407–8.

    Google Scholar 

  • WEIBEL, E. R. (1972) A stereological method for estimating volume and surface of sarcoplasmic reticulum.J. Microscopy 95, 229–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinrichsen, C., Dulhunty, A. The contractile properties, histochemistry, ultrastructure and electrophysiology of the cricothyroid and posterior cricoarytenoid muscles in the rat. J Muscle Res Cell Motil 3, 169–190 (1982). https://doi.org/10.1007/BF00711941

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711941

Keywords

Navigation