Skip to main content
Log in

Reduction of the acetylcholine-induced K+ current in identifiedAplysia neurons by human interleukin-1 and interleukin-2

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Effects of bath-applied recombinant human interleukin-1 (rhIL-1) and interleukin-2 (rhIL-2) on the acetylcholine (ACh)-induced K+ current recorded from identified neurons (R9 and R10) ofAplysia kurodai were investigated with voltage-clamp and pressure ejection techniques.

  2. 2.

    Bath-applied rhIL-1 and rhIL-2 (10–40 U/ml) reduced the ACh-induced current in the neurons without affecting the resting membrane conductance and holding current.

  3. 3.

    The suppressing effects of these cytokines on the current were completely reversible.

  4. 4.

    Heat-inactivated rhIL-1 and rhIL-2 were without effect.

  5. 5.

    These results suggest that the immunomodulators, IL-1 and IL-2, can modulate the ACh-induced response in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckner, S. K., and Farrar, W. L. (1986). Interleukin-2 modulation of adenylate cyclase. Potential role of protein kinase C.J. Biol. Chem. 2613043–3047.

    Google Scholar 

  • Dafny, N., Prieto-Gomez, B., and Retes-Vazquez, C. (1985). Does the immune system communicate with the central nervous system? Interferon modifies central neuron activity.J. Neuroimmunol. 91–12.

    Google Scholar 

  • Dinarello, C. A. (1986). Multiple biological properties of recombinant human interleukin 1 (beta).Immunology 172301–305.

    Google Scholar 

  • Evans, S. W., Beckner, S. K., and Farrar, W. L. (1987). Stimulation of specific GTP binding and hydrolysis activities in lymphocyte membrane by interleukin-2.Nature 325166–168.

    Google Scholar 

  • Farrar, W. L., and Andersen, W. B. (1985). Interleukin-2 stimulates association of protein kinase C with plasma membrane.Nature 315233–235.

    Google Scholar 

  • Farrar, W. L., Hill, J. M., Harle-Bellan, A., and Vinocur, M. (1987). The immunological brain.Immunol. Rev. 100361–378.

    Google Scholar 

  • Fontana, A., Kristensen, F., Dubs, R., Gemsa, D., and Weber, E. (1982). Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells.J. Immunol. 1292413–2419.

    Google Scholar 

  • Fontana, A., Weber, E., and Dayer, J.-M. (1984). Synthesis of interleukin 1/endogenous pyrogen in the brain of endotoxin-treated mice: A step in fever induction?J. Immunol. 1331696–1698.

    Google Scholar 

  • Frazier, W. T., Kandel, E. R., Kupfermann, L., Waziri, R., and Coggeshall, R. E. (1967). Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia californica.J. Neurophysiol. 301288–1351.

    Google Scholar 

  • Giulian, D., and Lachman, L. B. (1982). Interleukin-1 stimulation of astroglial proliferation after brain injury.Science 228497–499.

    Google Scholar 

  • Giulian, D., Baker, T. J., Shih, L.-C. N., and Lachman, B. (1986). Interleukin-1 of the central nervous system is produced by ameboid microglia.J. Exp. Med. 164594–604.

    Google Scholar 

  • Giulian, D., Young, D. G., and Woodward, J. (1988). Interleukin-1 is an astroglial growth factor in the developing brain.J. Neurosci. 8709–714.

    Google Scholar 

  • Hori, T., Shibata, M., Nakashima, T., Yamasaki, M., Asami, A., Asami, T., and Koga, H. (1988). Effects of interleukin-1 and arachidonate on the preoptic and anterior hypothalamic neurons.Brain Res. Bull. 2075–82.

    Google Scholar 

  • Nakashima, T., Hori, T., Kuriyama, K., and Mizuno, K. (1989). Recombinant human interleukin-1-β alters the activity of preoptic thermosensitive neurons in vitro.Brain Res. Bull. 23209–213.

    Google Scholar 

  • Oomura, Y. (1988). Chemical and neuronal control of feeding motivation.Physiol. Behav. 44555–560.

    Google Scholar 

  • Plata-Salaman, C. R., Oomura, Y., and Kai, Y. (1988). Tumor necrosis factor and interleukin-1-β: Suppression of food intake by direct action in the central nervous system.Brain Res. 448106–114.

    Google Scholar 

  • Sawada, M., Hara, N., and Maeno, T. (1991a). Ionic mechanism of the outward current induced by extracellular ejection of interleukin-1 onto identified neurons ofAplysia.Brain Res. 545248–256.

    Google Scholar 

  • Sawada, M., Hara, N., and Maeno, T. (1991b). Tumor necrosis factor reduces the ACh-induced outward current in identifiedAplysia neuons.Neurosci. Lett. 131217–220.

    Google Scholar 

  • Smith, K. A. (1988). Interleukin-2: Inception, impact, and implications.Science 2401169–1176.

    Google Scholar 

  • Solomon, G. F. (1987). Psychoneuroimmunology: Interactions between central nervous system and immune system.J. Neurosci. Res. 181–9.

    Google Scholar 

  • Tancredi, V., Zona, C., Velotti, F., Eusebi, F., and Santoni, A. (1990). Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus.Brain Res. 525149–151.

    Google Scholar 

  • Zona, C., Palma, E., Santoni, A., Grassi, F., and Eusebi, F. (1990). Interleukin-2 reduces voltage-activated Na+-currents in embryonic rat hippocampal neurons.Soc. Neurosci. Abstr. 16181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, M., Hara, N. & Maeno, T. Reduction of the acetylcholine-induced K+ current in identifiedAplysia neurons by human interleukin-1 and interleukin-2. Cell Mol Neurobiol 12, 439–445 (1992). https://doi.org/10.1007/BF00711544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711544

Key words

Navigation