Skip to main content
Log in

Neuronal membrane depolarization and the control of cholinergic muscarinic receptors: selective effect on different neuronal cell types

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The possibility that a long-lasting neuronal activation regulates the expression of muscarinic cholinergic receptors was studied with three cultured neuronal cell lines.

  2. 2.

    Continuous depolarization of a subclone of the neuroblastoma-glioma NG108-15 hybrid cells with potassium chloride increased by 45–75% the number of cholinergic muscarinic receptors, monitored with3H-QNB, whereas a short incubation with KC1 for 10 min or 6 hr had no effect.

  3. 3.

    The calcium channel blocker verapamil increased the effect of KC1.

  4. 4.

    Two cell lines, named SC9 and WC5, that originate from the rat brain, also bind3H-QNB. They were therefore used to test whether the effect of chronic depolarization is universal. Depolarized SC9 and WC5 cells, in the presence or absence of verapamil, did not show an increased3H-QNB binding.

  5. 5.

    Muscarinic receptors of both SC9 and WC5 cells have a higher affinity to pirenzepine than the M-3 receptor subtype of the neuroblastoma-glioma cells, suggesting therefore that the two rat brain cell lines possess M-1 or M-2 receptors.

  6. 6.

    The physiological significance of this differential role of depolarization on the expression of different muscarinic receptors is discussed in the context of their postreceptor second messengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alzheimer, A. (1907). Uber ein eigenartige erkrankung der hirnrinde.Allg. Z. Psychiat. 64146–148.

    Google Scholar 

  • Birdsall, N. J. M., and Hulme, E. C. (1983). Muscarinic receptor subclasses.Trends Pharmacol. Sci. 4459–463.

    Google Scholar 

  • Blaustein, M. P. (1975). Effects of potassium, veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.J. Physiol. 247617–655.

    Google Scholar 

  • Brown, S. L., and Brown, J. H. (1983). Muscarinic stimulation of phosphatidylinositol metabolism in atria.Mol. Pharmacol. 24351–356.

    Google Scholar 

  • Cohen, S., and Sokolovsky, M. (1987). Complexity apparent in muscarinic mechanisms.Trend Pharmacol. Sci. 841–44.

    Google Scholar 

  • Collerton, D. (1986). Cholinergic function and intellectual decline in Alzheimer's disease.Neuroscience 191–28.

    Google Scholar 

  • Decker, M. W. (1987). The effect of aging on hippocampal and cortical projections of the forebrain cholinergic system.Brain Res. Rev. 12423–438.

    Google Scholar 

  • Deutsch, J. A. (1971). The cholinergic synapse and the site of memory.Science 174788–794.

    Google Scholar 

  • Drachman, D. A., and Leavitt, J. (1974). Human memory and the cholinergic system: A relationship to aging?Arch. Neurol. 30113–121.

    Google Scholar 

  • Evans, T., Smith, M. M., Tanner, L. I., and Harden, T. K. (1984). Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms.26:395–404.

  • Fambrough, D. M., Devreotes, P. N., Gardner, J. M., and Card, D. J. (1979). The life history of acetylcholine receptors.Prog. Brain Res. 49325–334.

    Google Scholar 

  • Frank, E. (1987). The influence of neuronal activity on patterns of synaptic connections.Trends Neurosci. 10188–190.

    Google Scholar 

  • Giotta, G. J., and Cohn, M. (1981). The expression of glial fibrillary acidic protein in a rat cerebellar cell line.J. Cell. Physiol. 107219–230.

    Google Scholar 

  • Giotta, G. J., Heitzmann, J., and Cohn, M. (1980). Properties of two temperature-sensitive Rous sarcoma virus transformed cerebellar cell lines.Brain Res. 202445–458.

    Google Scholar 

  • Giotta, G. J., Heitzmann, J., and Cohn, M. (1982). Immunological identification of cerebellar cell lines.Dev. Brain Res. 4209–221.

    Google Scholar 

  • Goddard, G. A., and Robinson, J. D. (1976). Uptake and release of calcium by rat brain synaptosomes.Brain Res. 110331–350.

    Google Scholar 

  • Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. (1980). Pirenzepine distinguishes between different subclasses of muscarinic receptors.Nature 28390–92.

    Google Scholar 

  • Hamprecht, B. (1977). Structural, electrophysiological, biochemical and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture.Int. Rev. Cytol. 4999–170.

    Google Scholar 

  • Iversen, L. L. (1986). The cholinergic hypothesis of dementia.Trends Pharmacol. Sci. 744–45.

    Google Scholar 

  • Klee, W. A., and Nirenberg, M. (1974). A neuroblastoma × glioma hybrid cell line with morphine receptors.Proc. Natl. Acad. Sci. USA 713474–3477.

    Google Scholar 

  • Liles, W. C., and Nathanson, N. M. (1987). Regulation of muscarinic acetylcholine receptor number in cultured neuronal cells by chronic membrane depolarization.J. Neurosci. 72556–2563.

    Google Scholar 

  • Mattera, R., Pitts, B. J. R., Entman, M. L., and Birnbaumer, L. (1985). Guanine regulation of a mammalian myocardial muscarinic receptor system.J. Biol. Chem. 2607410–7421.

    Google Scholar 

  • Mckinney, M., Stenstrom, S., and Richelson, E. (1985). Muscarinic receptors and binding in a murine neuroblastoma clone NIE-115.Mol. Pharmacol. 27223–235.

    Google Scholar 

  • Murphy, S., Pearce, B., and Morrow, C. (1986). Astrocytes have both M1 and M2 muscarinic receptor subtypes.Brain Res. 364177–180.

    Google Scholar 

  • Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. (1987). Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors.Embo. J. 63923–3929.

    Google Scholar 

  • Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H. and Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.Br. Med. J. 21457–1459.

    Google Scholar 

  • Rascol, O., and Lamour, Y. (1987). Effect of M-1 and M-2 muscarinic agonists on septo-hippocampal and other central neurons in the rat.Soc. Neurosci. Abstr. 13484.

    Google Scholar 

  • Schwarcz, R. D., Coughenour, L. L., Davis, R. E., Moos, W. H., and Spencer, C. J. (1987). Efficacy at central muscarinic receptors: Correlation of receptor binding with phosphatidylinositol turnover,3H-acetylcholine release, andin vivo behavioral activity.Soc. Neurosci. Abstr. 13487.

    Google Scholar 

  • Simantov, R., and Levy, R. (1984). Opiate receptor mechanisms: Characterization of selected neuroblastoma-glioma cells with an enhanced response to opiate antagonists. InCentral and Peripheral Endorphins: Basic and Clinical Aspects (E. E. Müller and A. R. Genazzani, Eds.), Raven Press, New York, pp. 65–70.

    Google Scholar 

  • Simantov, R., Levy, R., and Baram, D. (1982). Down regulation of enkephalin (δ) receptors: Demonstration in membrane-bound and solubilized receptors.Biochim. Biophys. Acta 721478–484.

    Google Scholar 

  • Supavilai, P., Bobirnac, I., and Karobath, M. (1987). Characterization of muscarinic autoreceptors in the rat hippocampus and frontal cortex.Soc. Neurosci. Abstr. 13485.

    Google Scholar 

  • Tanner, L. I., Harden, T. K., Wells, J. N., and Martin, M. W. (1986). Identification of the phosphodiesterase regulated by muscarinic cholinergic receptors of 1321N1 human astrocytoma cells.Mol. Pharmacol. 29455–460.

    Google Scholar 

  • Walicke, P. A., Campenot, R. B., and Patterson, P. H. (1977). Determination of transmitter function by neuronal activity.Proc. Natl. Acad. Sci. USA 745767–5771.

    Google Scholar 

  • Yamamura, H. I., and Snyder, S. H. (1974). Muscarinic cholinergic binding in rat brain.Proc. Natl. Acad. Sci. USA 711725–1729.

    Google Scholar 

  • Zigmond, R. E., and Bowers, C. W. (1981). Influence of nerve activity on the macromolecular content of neurons and their effector organs.Annu. Rev. Physiol. 43673–687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simantov, R., Levy, R. Neuronal membrane depolarization and the control of cholinergic muscarinic receptors: selective effect on different neuronal cell types. Cell Mol Neurobiol 9, 87–94 (1989). https://doi.org/10.1007/BF00711445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711445

Key words

Navigation