Skip to main content
Log in

Effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    A review of the effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system is presented.

  2. 2.

    The effects of antidepressants on adenylate cyclase activity and on receptor binding in brain tissue are discussed. Effects on a variety of receptor types are considered.

  3. 3.

    The utilization of electrophysiological, behavioral, and neurochemical studies to assess receptor function after chronic antidepressant administration is discussed, as is the use of peripheral receptor estimations in clinical studies.

  4. 4.

    Animal studies on the actions of chronic administration of neuroleptics on pre- and postsynaptic dopamine receptors are reviewed. Effects of these drugs on dopamine receptors in humans are considered from the following perspectives: postmortem andin vivo binding studies in schizophrenia, tardive dyskinesia, and central versus peripheral receptor estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., and Haigler, H. J. (1974). Mode of action of LSD on serotonergic neurons.Adv. Biochem. Psychopharmacol. 10167–177.

    Google Scholar 

  • Aiso, M., Potter, W. Z., and Saavedra, J. M. (1987). Axonal transport of dopamine D1 receptors in the rat brain.Brain Res. 426392–396.

    Google Scholar 

  • Altar, C. A., Boyar, W. C., Oei, E., and Wood, P. L. (1987). Dopamine autoreceptors modulate the in vivo release of dopamine in the frontal, cingulate and entorhinal cortices.J. Pharmacol. Exp. Ther. 242115–120.

    Google Scholar 

  • Antelman, S. M., Chiodo, L. A., and De Giovanni, O. A. (1982). Antidepressants and dopamine autoreceptors: Implications for both a novel means of treating depression and understanding bipolar illness. InTypical and Atypical Antidepressants (E. Costa and G. Racagni, Eds.), Raven Press, New York.

    Google Scholar 

  • Antkiewicz-Michaluk, L., Michaluk, J., Rokosz-Pelc, A., Marona-Lewicka, D., and Vetulani, J. (1987). The effect of chronic imipramine and electroconvulsive shock treatment on [3H]DADLE binding to cortical membranes of rats pretreated with chronic reserpine or 6-hydroxydopamine.Pharmacol. Biochem. Behav. 26203–026.

    Google Scholar 

  • Asakura, M., Tsukamoto, T., Kubota, H., Imafuka, J., Ino, M., Nishizaki, J., Sato, A., Shinbo, K., and Hasegawa, K. (1987). Role of serotonin in the regulation ofβ-adrenoceptors by antidepressants.Eur. J. Pharmacol. 14195–100.

    Google Scholar 

  • Bacopoulos, N. G. (1981). Biochemical mechanism of tolerance to neuroleptic drugs; Regional differences in rat brain.Eur. J. Pharmacol. 70 585–586.

    Google Scholar 

  • Bacopoulos, N. G., Spokes, E. G., Bird, E. D., and Roth, R. H. (1979). Antipsychotic drug action in schizophrenic patients: Effect on cortical dopamine metabolism after long-term treatment.Science 2051405–1407.

    Google Scholar 

  • Baldessarini, R. J. (1980). Drugs and the treatment of psychiatric disorders. InThe Pharmacological Basis of Therapeutics (A. G. Gilman, L. S. Goodman, and A. Gilman, Eds). Macmillan, New York.

    Google Scholar 

  • Banerjee, S. P., Kung, L. S., Rigi, S. J., and Chandra, S. K. (1977). Development of beta-adrenergic subsensitivity by antidepressants.Nature 268455–456.

    Google Scholar 

  • Berrettini, W. H., Cappellari, C. B., Nurnberger, J. I., Jr., and Gershon, E. S. (1987). Beta-adrenergic receptors on lymphoblasts.Neuropsychobiology 1715–18.

    Google Scholar 

  • Bhargava, H. N. (1986). Brain peptides, neuroleptic-induced tolerance, and dopamine receptor subsensitivity: Implications in tardive dyskinesia. InMovement Disorders (N. S. Shah and A. G. Donald, Eds.), Plenum, New York.

    Google Scholar 

  • Biegon, A., and Israeli, M. (1986). Localization of the effects of eletroconvulsive shock onβ-adrenoceptors in the rat brain.Eur. J. Pharmacol. 123329–334.

    Google Scholar 

  • Blackshear, M. A., and Sanders-Bush, E. (1982). Serotonin receptor sensitivity after acute and chronic treatment with mianserin.J. Pharmacol. Exp. Ther. 314303–308.

    Google Scholar 

  • Bland, R. C. (1985). Clinical features of affective disorders. I. Diagnosis, classification, rating scales, outcome and epidemiology. InPharmacotherapy of Affective Disorders (W. G. Dewhurst and G. B. Baker, Eds.), Croom Helm, London.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1980). Effect of chronic antidepressant treatment on the serotoninergic autoreceptor: A microiontophoretic study in the rat.Naunyn-Scmiedeberg Arch. Pharmacol. 314123–128.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1983). Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat.J. Neurosci. 31270–1278.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1985a). Neurobiological basis of antidepressant treatments. InPharmacotherapy of Affective Disorders, Theory and Practice (W. G. Dewhurst and G. B. Baker, Eds.), Croom Helm, London.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1985b). Serotoninergic but not noradrenergic neurons in rat central nervous system adapt to long-term treatment with monoamine oxidase inhibitors.Neuroscience 16949–955.

    Google Scholar 

  • Blier, P., and de Montigny, C. (1987). Modifications of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: Electrophysiological studies in the rat brain.Synapse 1470–480.

    Google Scholar 

  • Blier, P., de Montigny, C., and Tardif, D. (1984). Effects of two antidepressant drugs, mianserin and indalpine, on the serotonergic system: Single-cell studies in the rat.Psychopharmacology 84242–249.

    Google Scholar 

  • Blier, P., de Montigny, C., and Azarro, A. J. (1986a). Effect of repeated amiflamine administration on serotonergic and noradrenergic neurotransmission: Electrophysiological studies in the rat CNS.Naunyn-Schmiedeberg Arch. Pharmacol. 334253–260.

    Google Scholar 

  • Blier, P., de Montigny, C., and Azarro, A. J. (1986b). Modification of serotonergic and noradrenergic neurotransmissions by repeated administration of monoamine oxidase inhibitors: Electrophysiological studies in the rat central nervous system.J. Pharmacol. Exp. Ther. 237987–994.

    Google Scholar 

  • Blier, P., de Montigny, C., and Chaput, Y. (1987). Modifications of the serotonin system by antidepressant treatments: Implications for the therapeutic response in major depression.J. Clin. Psychopharmacol. 7 (6 Suppl.24S-35S.

    Google Scholar 

  • Blier, P., Chaput, Y. and de Montigny, C., (1988).In vivo electrophysiological evidence in the rat brain suggesting an interaction between imipramine binding sites and terminal 5-HT autoreceptors.Naunyn-Schmiedeberg Arch. Pharmacol. 337 246–254.

    Google Scholar 

  • Borison, R. L., Fields, J. Z., and Diamand, B. I. (1981). Site-specific blockade of dopamine receptors by neuroleptic agents in human brain.Neuropharmacology 201321–1322.

    Google Scholar 

  • Borison, R. L., Hitri, A., Blowers, A. J., and Diamond, B. I. (1983). Antipsychotic drug action: Clinical, biochemical, and pharmacological evidence for site specificity of action.Clin. Neuropharmacol. 6137–150.

    Google Scholar 

  • Borsini, F., Giuliani, S., and Meli, A. (1986). Functional evidence for altered activity of gabaergic receptors following chronic desipramine treatment in rats.J. Pharm. Pharmacol. 38934–935.

    Google Scholar 

  • Boulton, A. A., Baker, G. B., and Hrdina, P. D. (Eds.) (1986)Neuromethods, Vol. 4, Receptor Binding, Humana Press, Clifton, N.J.

    Google Scholar 

  • Bowery, N. G. (1983). Classification of GABA receptors. InThe GABA Receptors (S. J. Enna, Ed), Humana Press, Clifton, N.J.

    Google Scholar 

  • Burt, D. R., Creese, I., and Snyder, S. H. (1977). Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain.Science 196326–328.

    Google Scholar 

  • Byerley, W. F., McConnell, E. J., McCabe, R. T., Dawson, T. M., Grosser, B. I., and Wamsley, J. K. (1988). Decreased beta-adrenergic receptors in rat brain after chronic administration of the selective serotonin uptake inhibitor fluoxetine.Psychopharmacology 94141–143.

    Google Scholar 

  • Campbell, I. C., and McKernan, R. M. (1982). Central and peripheral changes inα-adrenoreceptors in the rat after chronic tricyclic antidepressants.Br. J. Pharmacol. (Suppl.)75:100P.

    Google Scholar 

  • Carenzi, A., Gillin, J. C., Guidotti, A., Schwartz, M. A., Trabucchi, M., and Wyatt, R. J. (1975). Dopamine-sensitive adenyl cyclase in human caudate nucleus.Arch. Gen. Psychiat. 32 1056–1059.

    Google Scholar 

  • Carstens, M. E., Engelbrecht, A. H., Russell, V. A., Aalbers, C., Gagiano, C. A., Chalton, D. O., and Taljaard, J. J. F. (1986a). Alpha2-adrenoceptor levels of platelets of patients with major depressive disorders.Psychiat. Res. 18321–331.

    Google Scholar 

  • Carstens, M. E., Engelbrecht, A. H., Russell, V. A., Aalbers, C., Gagiano, C. A., Chalton, D. O., and Taljaard, J. J. F. (1986b). Imipramine binding sites on platelets of patients with major depressive disorder.Psychiat. Res. 18333–342.

    Google Scholar 

  • Cedarbaum, J. M., and Aghajanian, G. K. (1977). Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization.Eur. J. Pharmacol. 44375–385.

    Google Scholar 

  • Chalecka-Franaszek, E., and Vetulani, J. (1986). Lack of effect of chronic imipramine administration ofβ-adrenoceptor density on rat lymphocytes.Pol. J. Pharmacol. Pharm. 38385–390.

    Google Scholar 

  • Chaput, Y., de Montigny, C., and Blier, P. (1986). Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: Electrophysiological studies in the rat brain.Naunyn-Schmiedeberg Arch. Pharmacol. 333342–348.

    Google Scholar 

  • Chaput, Y., Blier, P., and de Montigny, C. (1988). Acute and long-term effects of antidepressant 5-HT reuptake blockers on the efflcacy of 5-HT neurotransmission: Electrophysiological studies in the rat CNS.Mod. Prob. Pharmacopsychiat. (in press).

  • Chiodo, L. A., and Bunney, B. S. (1985). Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons.J. Neurosci. 52539–2544.

    Google Scholar 

  • Chouinard, G., and Jones, B. D. (1980). Neuroleptic-induced supersensitivity psychosis: Clinical and pharmacological characteristics.Am. J. Psychiat. 13716–31.

    Google Scholar 

  • Christensen, A. V., Arnt, J., and Svendsen, O. (1985). Pharmacological differentiation of dopamine D-1 and D-2 antagonists after single and repeated administration. InDyskinesia—Research and Treatment (Psychopharmacology, Suppl. 2) (D. E. Casey, T. Chase, A. V. Christensen, and J. Gerlach, Eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Clow, A., Theodorou, A., Jenner, P., and Marsden, C. D. (1980a). Changes in rat striatal dopamine turnover and receptor activity during one year's neuroleptic administration.Eur. J. Pharmacol. 63135–144.

    Google Scholar 

  • Clow, A., Theodorou, A., Jenner, P., and Marsden, C. D. (1980b). Cerebral dopamine function in rats following withdrawal from one year of continuous neuroleptic administration.Eur. J. Pharmacol. 63145–157.

    Google Scholar 

  • Cohen, R. M., Ebstein, R. P., Daly, J. W., and Murphy, D. L. (1982a). Chronic effects of a monoamine oxidase-inhibiting antidepressant: Decreases in functionalα-adrenergic autoreceptors precede the decrease in norepinephrine-stimulated cyclic adenosine 3′:5′-monophosphate systems in rat brain.J. Neurosci. 21588–1595.

    Google Scholar 

  • Cohen, R. M., Campbell, I. C., Dauphin, M., Tallman, J. F., and Murphy, D. L. (1982b). Changes inα- andβ-receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepressants.Neuropharmacology 21293–298.

    Google Scholar 

  • Cohen, R. M., Aulakh, C., McLellan, C., and Murphy, D. L. (1985). 6-Hydroxydopamine pretreatment effects ofα- andβ-adrenergic receptor adaptation to clorgyline.Naunyn-Schmiedeberg Arch. Pharmacol. 329158–161.

    Google Scholar 

  • Coppen, A. (1967). The biochemistry of affective disorders.Br. J. Psychiat. 1131237–1264.

    Google Scholar 

  • Corradetti, R., Ruggiero, M., Chiarugi, V. P., and Pepeu, G. (1987). GABA-receptor stimulation enhances norepinephine-induced polyphosphoinositide metabolism in rat hippocampal slices.Brain Res. 411196–199.

    Google Scholar 

  • Costain, D. W., Green, A. R., and Grahame-Smith, D. G. (1979). Enhanced 5-hydroxytryptamine-mediated behavioral response in rats following repeated electroconvulsive shock; Relevance to the mechanisms of the antidepressive effect of electroconvulsive therapy.Psychopharmacology 61167–170.

    Google Scholar 

  • Crawley, J. C. W., Crow, T. J., Johnstone, E. C., Oldland, S. R. D., Owen, F., Owens, D. G. C., Poulter, M., Smith, T., Veall, N., and Zanelli, G. D. (1986). Dopamine D2 receptors in schizophrenia studiedin vivo.Lancet 2224–225.

    Google Scholar 

  • Creese, I. (1987). Biochemical properties of CNS dopamine receptors. InPsychopharmacology: The Third Generation of Progress (H. Y. Meltzer, Ed.), Raven Press, New York.

    Google Scholar 

  • Creese, I., and Chen, A. (1985). Selective D-1 dopamine receptor increase following chronic treatment with SCH23390.Eur. J. Pharmacol. 109127–128.

    Google Scholar 

  • Cross, A. J., Crow, T. J., and Owen, F. (1981).3H-Flupenthixol binding in post-mortem brains of schizophrenics: Evidence for a selective increase in dopamine D2 receptors.Psychopharmacology 74122–124.

    Google Scholar 

  • Cross, J. A., and Horton, R. W. (1987). Are increases in GABAB receptors consistent findings following chronic antidepressant administration?Eur. J. Pharmacol. 141159–162.

    Google Scholar 

  • Damlouji, N. F., Feighner, J. P., and Rosenthal, M. H. (1985). Recent advances in antidepressants. InPharmacotherapy of Affective Disorders, Theory and Practice. (W. G. Dewhurst and G. B. Baker, Eds.) Croom Helm, London.

    Google Scholar 

  • Deshieff, R. M., Savage, D. D., and McNamara, J. O. (1982). Seizures downregulate muscarinic cholinergic receptors in hippocampal formation.Brain Res. 235327.

    Google Scholar 

  • DeLisi, L. E., Crow, T. J., and Hirsch, S. R. (1986). The third biannual winter workshop on schizophrenia.Arch. Gen. Psychiat. 43706–711.

    Google Scholar 

  • de Montigny, C. (1984). Electroconvulsive shock treatments enhance responsiveness of forebrain neurons to serotonin.J. Pharmacol. Exp. Ther. 228230–234.

    Google Scholar 

  • de Montigny, C., and Aghajanian, G. K. (1978). Tricyclic antidepressants: Long-term treatment increases responsivity of rat forebrain neurons to serotinin.Science 2021303–1306.

    Google Scholar 

  • de Montigny, C., and Turmel, A. (1984). Early sensitization of forebrain neurons to serotonin by an antidepressant triazolobenzodiazepine, adinazolam: A single cell recording microiontophoretic study in the rat.Proc. Coll. Int. Neuro-Psychopharmacol. 14415.

    Google Scholar 

  • de Montigny, C., Blier, P., Caille, G., and Kouassi, E. (1981). Pre- and postsynaptic effect of zimelidine and norzimelidine on the serotonergic system: Single cell study in the rat.Acta. Psychiat. Scand. 63 (Suppl. 290):79–90.

    Google Scholar 

  • Dewey, K. J., and Fibiger, H. C. (1983). The effects of dose and duration of chronic pimozide administration on dopamine receptor supersensitivity.Naunyn-Schmiedeberg Arch. Pharmacol. 322261–270.

    Google Scholar 

  • Dooley, D. J., Heal, D. J., and Goodwin, G. M. (1986). Repeated electroconvulsive shock prevents increased neocorticalβ 1-adrenoceptor binding after DSP-4 treatment in rats.Eur. J. Pharmacol. 134333–337.

    Google Scholar 

  • Dowdall, M., and de Montigny, C. (1984). Pre- and postsynaptic effects of trazodone on serotonin neurotransmission: Single cell studies in the rat.Soc. Neurosci. Abstr. 1017.

    Google Scholar 

  • Doxey, J. C., Hewlett, D. R., and Roach, A. G. (1981). Assessment of theα-adrenoreceptor selectivity of WB 4101: A comparison with prazosin and phentolamine.Br. J. Pharmacol. 61262P-263P.

    Google Scholar 

  • Ebstein, R. P., Pickholz, D., and Belmaker, R. H. (1979). Dopamine receptor changes after long-term haloperidol treatment in rats.J. Pharm. Pharmacol. 31558–559.

    Google Scholar 

  • Ellison, D. W., and Campbell, I. C. (1986). Studies on the role ofα 2-adrenoceptors in the control of synaptosomal [3H]5-hydroxytryptamine release: Effects of antidepressant drugs.J. Neurochem. 46218–223.

    Google Scholar 

  • El Mestikaway, S., Glowinski, J., and Hamon, M. (1986). Presynaptic dopamine autoreceptors control tyrosine hydroxylase activation in depolarized striatal dopaminergic terminals.J. Neurochem. 4612–22.

    Google Scholar 

  • Farde, L., Ehrin, E., Eriksson, L., Greitz, T., Hall, Hedstrom, C., Litton, J.-E., and Sedvall, G. (1985). Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography.Proc. Natl. Acad. Sci. USA 823863–3867.

    Google Scholar 

  • Farde, L., Hall, H., Ehrin, E., and Sedvall, G. (1986). Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET.Science 231258–261.

    Google Scholar 

  • Farde, L., Halldin, C., Stone-Elander, S., and Sedvall, G. (1987). PET analysis of human dopamine receptor subtypes using11C-SCH 23390 and11C-raclopride.Psychopharmacology 92278–284.

    Google Scholar 

  • Farde, L., Wiesel, F.-A., Jansson, P., Uppfeldt, G., and Sedvall, G. (1988). An open label trial of raclopride in acute schizophrenia. Confirmation of D2-dopamine receptor occupancy by PET.Psychopharmacology 941–7.

    Google Scholar 

  • Fibiger, H. C., and Lloyd, K. G. (1984). Neurobiological substrates of tardive dyskinesia: The GABA hypothesis.Trends NeuroSci. 7462–464.

    Google Scholar 

  • Fibiger, H. C., and Lloyd, K. G. (1986). Reply from Fibiger and Lloyd.Trends NeuroSci. 9260.

    Google Scholar 

  • Filloux, F. M., Wamsley, J. K., and Dawson, T. M. (1987). Dopamine D2 auto- and postsynaptic receptors in the nigrostriatal system of the rat brain: Localization by quantitative autoradiography with [3H]sulpiride.Eur. J. Pharmacol. 13861–68.

    Google Scholar 

  • Finlay, J. M., Jakubovic, A., Fu, D. S., and Fibiger, H. C. (1987). Tolerance to haloperidol-induced increases in dopamine metabolites: Fact or artifact?Eur. J. Pharmacol. 137117–121.

    Google Scholar 

  • Fjalland, B., and Moller-Nielsen, I. (1984). Enhancement of methylphenidate-induced stereotypes by repeated administration of neuroleptics.Psychopharmacologia 34105–109.

    Google Scholar 

  • Fleminger, S., Rupniak, N. M. J., Hall, M. D., Jenner, P., and Marsden, C. D. (1983). Changes in apomorphine-induced stereotypy as a result of subacute neuroleptic treatment correlates with increased D-2 receptors, but not with increases in D-1 receptors.Biochem. Pharmacol. 322921–2927.

    Google Scholar 

  • Fowler, C. J., Danysz, W., and Archer, T. (1986). Noradrenaline-stimulated inositol phospholipid breakdown as a measure of alpha1-adrenoceptor function in rat hippocampal miniprisms after repeated antidepressant treatment.J. Neural. Transm. 66197–208.

    Google Scholar 

  • Friedman, E., Gianutsos, G., and Kuster, J. (1983). Chronic fluphenazine and clozapine elicit opposite changes in brain muscarinic receptor binding: Implications for understanding tardive dyskinesia.J. Pharmacol. Exp. Ther. 2267–12.

    Google Scholar 

  • Friedman, E., Cooper, T., and Yocca, F. (1986). The effect of impramine treatment on brain serotonin receptors andβ-adrenoceptors and on pinealβ-adrenergic function in adult and aged rats.Eur. J. Pharmacol. 123351–356.

    Google Scholar 

  • Galant, S. P., Doniseti, L., Underwood, S., and Iusel, P. A. (1978). Leukocyteβ-adrenergic receptor assay in normals and asthmatics.N. Engl. J. Med. 299933–936.

    Google Scholar 

  • Gallager, D. W., and Bunney, W. E. (1979). Failure of chronic lithium treatment to block tricyclic antidepressant-induced 5-HT supersensitivity.Naunyn-Schmiedeberg Arch. Pharmacol. 307129–133.

    Google Scholar 

  • Galloway, M. P., and Roth, R. H. (1983). Biochemical response of dopamine neurons to atypical neuroleptics is not dependent on autoreceptors.Soc. Neurosci. Abstr. 91003.

    Google Scholar 

  • Garcia-Sevilla, J. A., Udina, C., Fuster, M. J., Alvarez, E., and Casas, M. (1987). Enhanced binding of [3H] (−) adrenaline to platelets of depressed patients with melancholia: Effect of long-term clomipramine treatment.Acta Psychiat. Scand. 75150–157.

    Google Scholar 

  • George, S. R., Watanabe, M., and Seeman, P. (1985b). Dopamine D2 receptors in the anterior pituitary: A single population without reciprocal antagonist/agonist states.J. Neurochem. 441168–1177.

    Google Scholar 

  • Georgotas, A., Schweitzer, J. McCue, R. E., Armour, M., and Friedhoff, A. J. (1987). Clinical and treatment effects of3H-clonidine and3H-imipramine binding in elderly depressed patients.Life Sci. 402137–2143.

    Google Scholar 

  • Gerlach, J., Casey, D. E., and Korsgaard, S. (1986). Tardive dyskinesia; Epidemiology, pathophysiology and pharmacology. InMovement Disorders (N. S. Shah and A. G. Donald, Eds), Plenum, New York.

    Google Scholar 

  • Ghadirian, A. M., Gianoulakis, C., and Nair, N. P. V. (1988). The effect of electroconvulsive therapy on endorphins in depression.Biol. Psychiat. 23459–464.

    Google Scholar 

  • Goetz, C. G., and Klawans, H. L. (1982). InButterworth's International Medical Reviews. Neurology 2: Movement Disorders (C. D. Marsden and S. Fahn, Eds.), Butterworth, London, pp. 263–276.

    Google Scholar 

  • Goldman, M. E., and Erickson, C. K. (1983). Effects of acute and chronic administration of antidepressant drugs on the central cholinergic nervous system.Neuropharmacology 221215–1222.

    Google Scholar 

  • Grace, A. A., and Bunney, B. S. (1986). Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: Analysis usingin vivo intracellular recording.J. Pharmacol. Exp. Ther. 2381092–1100.

    Google Scholar 

  • Graham, D., Tahraoui, L., and Langer, S. Z. (1987). Effect of chronic treatment with selective monoamine oxidase inhibitors and specific 5-hydroxytryptamine uptake inhibitors on [3H]paroxetine binding to cerebral cortical membranes of the rat.Neuropharmacology 261087–1092.

    Google Scholar 

  • Gravel, P., and de Montigny, C. (1983). Noradrenergic deprivation prevents tricyclic antidepressant-induced sensitization of rat forebrain neurons to serotonin.Soc. Neurosci. Abstr. 9429.

    Google Scholar 

  • Gravel, P., and de Montigny, C. (1987). Noradrenergic denervation prevents sensitization of rat forebrain neurons to serotonin by tricyclic antidepressant treatment.Synapse 1233–239.

    Google Scholar 

  • Gray, J. A., and Green, A. R. (1987). Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs of electroconvulsive shocks.Br. J. Pharmacol. 92357–362.

    Google Scholar 

  • Green, A. R. (1987). Evolving concepts on the interactions between antidepressant treatments and monoamine neurotransmitters.Neuropharmacology 26815–822.

    Google Scholar 

  • Green, A. R. (1988). The mechanism of action of antidepressant treatments: Basic aspects.Pharmacopsychiat 213–5.

    Google Scholar 

  • Green, A. R., and Deakin, J. F. W. (1980). Brain noradrenaline depletion prevents ECS-induced enhancement of serotonin- and dopamine-mediated behaviour.Nature 285232–233.

    Google Scholar 

  • Greenshaw, A. J., Baker, G. B., and Wishart, T. B. (1989). Dopamine receptor changes during chronic drug administration. InTolerance and Sensitization to Psychoactive Drugs (M. E. Emmett-Oglesby and A. J. Goudie, Eds), Humana Pres, Clifton, N.J. (in press).

    Google Scholar 

  • Greenshaw, A. J., Nazarali, A. J., Rao, T. S., Baker, G. B., and Coutts, R. T. (1988a). Chronic tranylcypromine treatment induces functional noradrenaline receptor down-regulation in ratsEur.J. Pharmacol. 15467–72.

    Google Scholar 

  • Greenshaw, A. J., Sanger, D. J., and Nguyen, T. V. (1988b). Animal models for assessing antidepressant, neuroleptic and anxiolytic drug action. InNeuromethods, Vol. 10, Analysis of Psychiatric Drugs (A. A. Boulton, G. B. Baker, and R. T. Coutts, Eds.), Humana Press, Clifton, N.J.

    Google Scholar 

  • Grigoriadis, D., and Seeman, P. (1984). The dopamine/neuroleptic receptor.Can. J. Neurol. Sci. 11108–113.

    Google Scholar 

  • Gunne, L.-M., Haggstrom, J.-E., and Sjoquist, B. (1984). Persistent neuroleptic-induced dyskinesia associated with regional changes within brain GABA and dopamine systems.Nature 309347.

    Google Scholar 

  • Gutkind, J. S. and Enero, M. A. (1984). Treatment with clorgyline and pargyline differentially decreases clonidine induced hypotension and bradycardia.Naunyn Schmiedeberg Arch. Pharmacol. 327189–192.

    Google Scholar 

  • Heal, D. J., Green, A. R., Boullin, D. J., and Grahame-Smith, D. G. (1976). Single and repeated administration of neuroleptic drugs to rats: Effects on striatal dopamine-sensitive adenylate cyclase and locomotor activity produced by tranylcypromine and L-tryptophan or L-dopa.Psychopharmacology 49287–300.

    Google Scholar 

  • Heninger, G. R., and Charney, D. S. (1987). Mechanism of action of antidepressant treatments: Implications for the etiology and treatment of depressive disorders. InPsychopharmacology: The Third Generation of Progress (H. Y. Meltzer, Ed.), Raven Press, New York.

    Google Scholar 

  • Hjorth, S., and Carlsson, A. (1987). Postsynaptic dopamine (DA) receptor stimulator properties of the putative DA autoreceptor-selective agonist B-HT 920 uncovered by co-treatment with the D-1 agonist SK & F 38393.Psychopharmacology 93534–537.

    Google Scholar 

  • Honegger, U. E., Disler, B., and Wiesmann, U. N. (1986). Chronic exposure of human cells in culture to the tricyclic antidepressant desipramine reduces the number of beta-adrenoceptors.Biochem. Pharmacol. 351899–1902.

    Google Scholar 

  • Hong. M., Kilpatrick, G. J., Jenner, P., and Marsden, C. D. (1987). Effects of continuous administration for 12 months of amine-depleting drugs and chlorpromazine on striatal dopamine function in the rat.Neuropharmacology 261061–1069.

    Google Scholar 

  • Hrdina, P. D. (1986). Binding sites and antidepressants. InNeuromethods, Vol. 4. Receptor Binding (A. A. Boulton, G. B. Baker, and P. D. Hrdina, Eds), Humana Press, Clifton, N.J.

    Google Scholar 

  • Hrdina, P. D. (1987). Regulation of high- and low-affinity3H-imipramine recognition sites in rat brain by chronic treatment with antidepressants.Eur. J. Pharmacol. 138159–168.

    Google Scholar 

  • Hyttel, J., and Christensen, A. V. (1983). Biochemical and pharmacological differentiation of neuroleptic effect on dopamine D-1 and D-2 receptors.J. Neural. Transm. 18157–164.

    Google Scholar 

  • Jacobs, B. L., and Klemfuss, M. (1975). Brain stem and spinal cord mediation of a serotonergic behavioural syndrome.Brain. Res. 100450–457.

    Google Scholar 

  • Janowsky, A., Okada, F., Manier, D. H., Applegate, G. D., Sulser, F., and Steranka, L. R. (1982). Role of serotonergic input in the regulation of theβ-adrenergic receptor-coupled adenylate cyclase system.Science 218900–901.

    Google Scholar 

  • Jenner, P., and Marsden, C. D. (1986). Is the dopamine hypothesis of tardive dyskinesia completely wrong?Trends NeuroSci. 9256.

    Google Scholar 

  • Jenner, P., and Marsden, C. D. (1987). Chronic pharmacological manipulation of dopamine receptors in brain.Neuropharmacology 26931–940.

    Google Scholar 

  • Johansson, P., Levin, E., Gunne, L., and Ellison, G. (1987). Opposite effects of a D1 and a D2 agonist on oral movements in rats.Eur. J. Pharmacol. 13483–88.

    Google Scholar 

  • Johnson, R. W., Reisine, T., Spotnitz, L., Wiech, N., Ursillo, R., and Yamamura, H. I. (1980). Effects of desipramine and yohimbine onα- andβ-adrenoreceptor sensitivity.Eur. J. Pharmacol. 67123–127.

    Google Scholar 

  • Jones, R. S. G. (1980). Long-term administration of atropine, imipramine, and viloxazine alters responsiveness of rat cortical neurons to acetylcholine.Can. J. Physiol. Pharmacol. 58531–535.

    Google Scholar 

  • Kafka, M. S., and Paul, S. M. (1986). Plateletα 2-adrenergic receptors in depression.Arch. Gen. Psychiat. 4391–95.

    Google Scholar 

  • Kafka, M. S., Nurnberger, J. I., Siever, L., Targum, S., Unde, T. W., and Gershon, E. S. (1986). Alpha2-adrenergic receptor function in patients with unipolar and bipolar affective disorders.J. Affect. Dis. 10163–169.

    Google Scholar 

  • Kane, J. M., Woerner, M., Lieberman, J. A., and Kinon, B. J. (1986). Tardive dyskinesia and drugs.Drug Dev. Res. 941–51.

    Google Scholar 

  • Karbon, E. W., Duman, R. S., and Enna, S. J. (1984). GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex.Brain Res. 306327–332.

    Google Scholar 

  • Kebabian, J. W., and Calne, D. B. (1979). Multiple receptors for dopamine.Nature 27793–96.

    Google Scholar 

  • Keith, R. A., and Salama, A. I. (1987). Inhibition of presynaptic alpha-2-adrenoceptor and opioid receptor agonist responses in the rat vas deferens by chronic imipramine treatment.Naunyn-Schmiedeberg Arch. Pharmacol. 335 412–419.

    Google Scholar 

  • Kellar, K. J., Cascio, C. S., Butler, J. A., and Kurtze, R. N. (1981). Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2-receptors in rat brain.Eur. J. Pharmacol. 69515–518.

    Google Scholar 

  • Kellar, K. J., Stockmeier, C. A., and Gomez, J. M. (1985). Regulation of serotonin neurotransmission by antidepressant drugs and electroconvulsive shock: The fall and rise of serotonin receptors.Acta Pharmacol. Toxicol. 56 (Suppl. 1):138–145.

    Google Scholar 

  • Kendall, D. A., and Nahorski, S. R. (1985). 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effect of antidepressants.J. Pharmacol. Exp. Ther. 233473.

    Google Scholar 

  • Kilts, C. D., Anderson, C. M., Ely, T. D., and Nishita, J. K. (1987). Absence of synthesismodulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations.J. Neurosci. 73961–3975.

    Google Scholar 

  • Klimek, V., and Nielsen, M. (1987). Chronic treatment with antidepressants decreases the number of [3H]SCH 23390 binding sites in the rat striatum and limbic system.Eur. J. Pharmacol. 139163–169.

    Google Scholar 

  • Koe, B. K., and Vinick, F. J. (1984). Adaptive changes in central nervous system receptor systems.Annu. Rep. Med. Chem. 1941–50.

    Google Scholar 

  • Kopanski, C., Turck, M., and Schulz, J. E. (1983). Effects of long-term treatment of rats with antidepressants on adrenergic-receptor sensitivity in cerebral cortex: Structure-activity study.Neurochem. Int. 5649–659.

    Google Scholar 

  • Kornhuber, J., Riederer, P., Reynolds, G. P., Beckmann, H., Jellinger, K., and Gabriel, E. (1989).3H-Spiperone binding sites in postmortem brains from schizophrenic patients. Relationship to neuroleptic drug treatment, abnormal movements and positive symptoms.J. Neural Transm. 751–10.

    Google Scholar 

  • Laduron, P. M. (1989). Dopamine receptors and neuroleptic drugs. InNeuromethods, Vol. 12 (A. A. Boulton, G. B. Baker, and A. V. Juorio, Eds), Humana Press, Clifton, N.J. (in press).

    Google Scholar 

  • Lapin, I. P., and Oxenkrug, G. F. (1969). Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect.Lancet 1132–136.

    Google Scholar 

  • Lee, T., Seeman, P., Tourtellotte, W. W., Farley, I. J., and Hornykiewicz, O. (1978). Binding of3H-neuroleptics and3H-apomorphine in schizophrenic brains.Nature 274897–900.

    Google Scholar 

  • Lerer, B., Epstein, R. B., and Belmaker, R. H. (1981). Sensitivity of humanβ-adrenergic adenylate cyclase after salbutamol treatment of depression.Psychopharmacology 75169–172.

    Google Scholar 

  • Lerer, B., Stanley, M., Demetriou, S., and Gershon, S. (1983). Effect of electroconvulsive shock on muscarinic cholinergic receptors in rat cerebral cortex and hippocampus.J. Neurochem. 411680.

    Google Scholar 

  • Lipinski, J. F., Cohen, B. M., Zubenko, G. S., and Waternaux, C. M. (1987). Adrenoreceptors and the pharmacology of affective illness: A unifying theory.Life Sci. 401947–1963.

    Google Scholar 

  • Liskowsky, D. R., and Potter, L. T. (1987). Dopamine D2 receptors in the striatum and frontal cortex following chronic administration of haloperidol.Neuropharmacology 26481–483.

    Google Scholar 

  • Lloyd, K. G. (1986). GABA receptor binding. InNeuromethods, Vol. 4. Receptor Binding (A. A. Boulton, G. B. Baker, and P. D. Hrdina, Eds.), Humana Press, Clifton, N.J.

    Google Scholar 

  • Lloyd, K. G., Thuret, F., and Pilc, A. (1985). Upregulation ofγ-aminobutyric acid (GABA) B binding studies in rat frontal cortex: A common action of repeated administration of different classes of antidepressants and electroshock.J. Pharmacol. Exp. Ther. 235191–199.

    Google Scholar 

  • Mackay, A. V. P., Bird, E. D., Spokes, E. G., Rossor, M., Iversen, L. L., Creese, I., and Synder, S. H. (1980). Dopamine receptors and schizophrenia: Drug effect or illness?Lancet 2915–916.

    Google Scholar 

  • Mackenzie, R. G., and Zigmond, M. J. (1984). High- and low-affinity states of striatal D2 receptors are not affected by 6-hydroxydopamine or chronic haloperidol treatment.J. Neurochem. 431310–1318.

    Google Scholar 

  • Mackenzie, R. G., and Zigmond, M. J. (1985). Chronic neuroleptic treatment increases D-2 but not D-1 receptors in rat striatum.Eur. J. Pharmacol. 113159–165.

    Google Scholar 

  • Maguire, M. E., Wiklund, R. A., Anderson, H. J., and Gilman, A. G. (1976). Binding of [125I] iodohydroxy benzylpindolol to putativeβ-adrenergic receptors of rat glioma cells and other cell clones.J. Biol. Chem. 2511221–1231.

    Google Scholar 

  • Maj, J., Gorka, Z., Melzacka, M., Rawlow, A., and Pilc, A. (1983). Chronic treatment with imipramine: Further functional evidence for the enhanced noradrenergic transmission in flex or reflex activity.Naunyn Schmiedeberg Arch. Pharmacol. 322256–260.

    Google Scholar 

  • Maj, J., Przegalinski, E., and Mogilnicka, E. (1984a). Hypotheses concerning the mechanism of action of antidepressant drugs.Rev. Physiol. Biochem. Pharmacol. 1001–74.

    Google Scholar 

  • Maj, J., Rogz, Z., Skuza, G., and Sowinska, H. (1984b). Repeated treatment with antidepressant drugs increases the behavioural response to apomorphine.J. Neural. Transm. 60273–282.

    Google Scholar 

  • Manier, D. H., Gillespie, D. D., Sanders-Bush, E., and Sulser, F. (1987). The serotonin/noradrenaline-link in brain. I. The role of noradrenaline and serotonin in the regulation of density and function of beta adrenoceptors and its alteration by desipramine.Naunyn-Schmiedeberg Arch. Pharmacol. 335109–114.

    Google Scholar 

  • Marsden, C. D., Tarsy, D., and Baldessarini, R. J. (1975). Spontaneous and drug-induced movement disorders in psychotic patients. InPsychiatric Aspects of Neurologic Disease (D. F. Benson and D. Blumer, Eds.), Grune & Stratton, New York.

    Google Scholar 

  • Martin-Iverson, M. T., Iversen, S. D., and Stahl, S. M. (1988a). Long-term motor stimulant effects of (+)-4-propyl-9-hydroxynaphthoxazine (PHNO), a dopamine D-2 receptor agonist: Interactions with a dopamine D-1 receptor antagonist and agonist.Eur. J. Pharmacol. 14925–31.

    Google Scholar 

  • Martin-Iverson, M. T., Iversen, S. D., and Stahl, S. M. (1988b). Chronic administration of a selective dopamine D-2 agonist: Factors determining behavioural tolerance and sensitization.Psychopharmacology 95534–539.

    Google Scholar 

  • Martin-Iverson, M. T., Stahl, S. M., and Iversen, S. D. (1987). Factors determining the behavioural consequences of continuous treatment with 4-propyl-9-hydroxynaphthoxazine, a selective dopamine D2 agonist. InParkinson's Disease: Clinical and Experimental Advances (F. C. Rose, Ed.), John Libbey, London.

    Google Scholar 

  • Mason, R., and Meyer, J. H. (1982). Enhanced responsiveness of rat suprachiasmatic nucleus (SCN) neurones to 5-hydroxytryptamine (5-HT) following chronic imipramine treatment.J. Physiol. (Lond)332105P-106P.

    Google Scholar 

  • Massingham, R., Dubocovich, M. L., Shepperson, N. B., and Langer, S. Z. (1981).In vivo selectivity of prazosin but not of WB 4101 for postsynaptic alpha-1 adrenoreceptors.J. Pharmacol. Exp. Ther. 217467–474.

    Google Scholar 

  • Matthysse, S. (1973). Antipsychotic drug actions: A clue to the neuropathology of schizophrenia?Fed. Proc. 32200–205.

    Google Scholar 

  • Mavroidis, M. L., Kanter, D. R., Greenblum, D. N., and Garver, D. L. (1984). Adrenergic-receptor densensitization and course of clinical improvement with desipramine treatment.Psychopharmacology 83295–296.

    Google Scholar 

  • McWilliam, J. R., and Campbell, I. C. (1987). Effects of antidepressant drug treatment onα 2-adrenoceptor control of [3H]noradrenaline release from hypothalamic synaptosomes.J. Neurochem. 49163–168.

    Google Scholar 

  • Meltzer, H. Y., and Stahl, S. M. (1976). The dopamine hypothesis of schizophrenia: A review.Schizophr. Bull. 219–76.

    Google Scholar 

  • Meltzer, H. Y., Goode, D. J., and Fang, V. S. (1978). The effect of psychotropic drugs on endocrine function. I. Neuroleptics, precursors and agonists. InPsychopharmacology A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, Eds.), Raven Press, New York.

    Google Scholar 

  • Memo, M., Kleinman, J. E., and Hanbauer, I. (1983). Coupling of dopamine D1 recognition sites with adenylate cyclase in nuclei accumbens and caudatus of schizophrenics.Science 2211304–1307.

    Google Scholar 

  • Memo, M., Pizzi, M., Missale, C., Carruba, M. O., and Spano, P. F. (1987a). Modification of the function of D1 and D2 dopamine receptors in striatum and nucleus accumbens of rats chronically treated with haloperidol.Neuropharmacology 26477–480.

    Google Scholar 

  • Memo, M., Pizzi, M., Nisoli, E., Missale, C., Carruba, M. O., and Spano, P. (1987b). Repeated administration of (−) sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions.Eur. J. Pharmacol. 13845–51.

    Google Scholar 

  • Menkes, D. B., Aghajanian, G. K. (1981). Alpha-1-adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment.Eur. J. Pharmacol. 7427–35.

    Google Scholar 

  • Menkes, D. B., Aghajanian, G. K., and McCall, R. B. (1980). Chronic antidepressant treatment enhancesα-adrenergic and serotonergic responses in the facial nucleus.Life Sci. 2745–55.

    Google Scholar 

  • Menkes, D. B., Aghajanian, G. K., and Gallager, D. W. (1983a). Chronic antidepressant treatment enhances agonist affinity of brain,α 1-adrenoceptors.Eur. J. Pharmacol. 8735–41.

    Google Scholar 

  • Menkes, D. B., Kehne, J. M., Gallager, D. W., Aghajanian, G. K., and Davis, M. (1983b). Functional supersensitivity of CNSα-adrenoceptors following chronic antidepressant treatment.Life Sci. 33181–188.

    Google Scholar 

  • Midha, K. K., Cooper, S. F., and McKay, G. (1986). Trace analysis of drugs and metabolites. InDevelopment of Drugs and Modern Medicines (J. W. Gorrod, G. G. Givson, and M. Mitchard, Eds.), Ellis Horwood, Chichester, pp. 181–196.

    Google Scholar 

  • Mogilnicka, E., and Klimek, V. (1979). Mianserin, danitracen and amitripytline withdrawal increases the behavioural responses of rats to L-5-HTP.J. Pharm. Pharmacol. 31704–705.

    Google Scholar 

  • Mogilnicka, E., Zazula, M., and Wedzony, K. (1987). Functional supersensitivity to theα 1-adrenoceptor agonist after repeated treatment with antidepressant drugs is not conditioned byβ-down-regulation.Neuropharmacology 261457–1461.

    Google Scholar 

  • Murphy, D. L., Garrick, N. A., Aulakh, C. S., and Cohen, R. M. (1984). New contributions from basic science to understanding the effects of monoamine oxidase inhibiting antidepressants.J. Clin. Psychiat. 4537–43.

    Google Scholar 

  • Murugiah, K., Mann, S., Theodorous, A., Jenner, P., and Marsden, C. D. (1982a). Increased striatal acetylcholine after 14 months flupenthixol treatment in rats suggests functional supersensitivity of dopamine receptors.Life Sci. 31181–188.

    Google Scholar 

  • Murugaiah, K., Theodorous, A., Mann, S., Clow, A., Jenner, P., and Marsden, C. D. (1982b). Chronic continuous administration of neuroleptic drugs alters cerebral dopamine receptors and increases spontaneous dopaminergic action in the striatum.Nature 296570–572.

    Google Scholar 

  • Murugaiah, K., Fleminger, S., Theodorou, A., Jenner, P., and Marsden, C. D. (1983). Persistent increase in striatal dopamine stimulated adenylate cyclase activity persists for more than 6 months but disappears after 1 year following withdrawal from 18 monthscis-flupenthixol intake.Biochem. Pharmacol. 322495–2499.

    Google Scholar 

  • Newman, M. E., and Lerer, B. (1988). Chronic electroconvulsive shock and desipramine reduce the degree of inhibition of 5-HT and carbachol of forskolin-stimulated adenylate cyclase in rat hippocampal membranes.Eur. J. Pharmacol. 148257–260.

    Google Scholar 

  • Newman, M. E., Solomon, H., and Lerer, B. (1986). Electroconvulsive shock and cyclic AMP signal transduction: Effects distal to the receptor.J. Neurochem. 461667–1669.

    Google Scholar 

  • Newman, M. E., Miskin, I., and Lerer, B. (1987). Effects of single and repeated electroconvulsive shock administration on inositol phosphate accumulation in rat brain slices.J. Neurochem. 4919.

    Google Scholar 

  • Nielsen, J. A. (1986). Effects of chronic antidepressants treatment on nigrostriatal and mesolimbic dopamine autoreceptors in the rat.Neurochem. Int. 961–67.

    Google Scholar 

  • Niznik, H. B., Otsuka, N. Y., Dumbrille-Ross, A., Grigoriadis, D., Tirpak, A., and Seeman, P. (1986a). Dopamine D1 receptors characterized with [3H]SCH 23390. Solubilization of a guanine nucleotide-sensitive form of the receptor.J. Biol. Chem. 2618397–8406.

    Google Scholar 

  • Niznik, H. B., Grigoriadis, D. E., Otsuka, N. Y., Dumbrille-Ross, A., and Seeman, P. (1986b). The dopamine D1 receptor: Partial purification of a digitonin-solubilized receptor-guanine nucleotide binding complex.Biochem. Pharmacol. 352974–2977.

    Google Scholar 

  • Offord, S. J., and Warwick, R. O., Jr. (1987). Differential effects of nialamide and clomipramine on serotonin efflux and autoreceptors.Pharmacol. Biochem. Behav. 26593–600.

    Google Scholar 

  • Okada, F., Tokumitsu, Y., and Ui, M. (1986). Desensitization ofβ-adrenergic receptor-coupled adenylate cyclase in cerebral cortex after in vivo treatment of rats with desipramine.J. Neurochem. 47454–459.

    Google Scholar 

  • Olianas, M. C., and Onali, P. (1987). Supersensitivity of striatal D2 dopamine receptors mediating inhibition of adenylate cyclase and stimulation of guanosine triphosphatase following chronic administration of haloperidol in mice.Neurosci. Lett. 78349–354.

    Google Scholar 

  • Olpe, H. R. (1981). Differential effects of clomipramine and clorgyline on the sensitivity of cortical neurons to serotonin: Effect of chronic treatment.Eur. J. Pharmacol. 69375–377.

    Google Scholar 

  • Olpe, H. R., and Schellenberg, A. (1980). Reduced sensitivity of neurons to noradrenaline after chronic treatment with antidepressant drugs.Eur. J. Pharmacol. 637–13.

    Google Scholar 

  • Olpe, H. R., and Schellenberg, A. (1981). The sensitivity of cortical neurons to serotonin: Effect of chronic treatment with antidepressants, serotonin-uptake inhibitors and monoamine-oxidase blocking drugs.J. Neural. Transm. 51233–244.

    Google Scholar 

  • Owen, F., Cross, A. J., Crow, T. J., Longden, A., Poulter, M., and Riley, G. J. (1978). Increased dopamine-receptor sensitivity in schizophrenia.Lancet 2223–226.

    Google Scholar 

  • Owen, F., Cross, A. J., Waddington, J. L., Poulter, M., Gamble, S. J., and Crow, T. J. (1980). Dopamine-mediated behaviour and3H-spiperone binding to striatal membranes in rats after nine months haloperidol administration.Life Sci. 2655–59.

    Google Scholar 

  • Palfreyman, M. G., Mir, A. K., Kubina, M., Middlemiss, D. N., Richards, M., Tricklebank, M. D., and Fozard, J. R. (1986). Monoamine receptor sensitivity changes following chronic administration of MDL 72394, a site-directed inhibitor of monoamine oxidase.Eur. J. Pharmacol. 13073–89.

    Google Scholar 

  • Palmer, G. C. (1985). Clinical considerations of the cyclic nucleotides in psychiatry and neurology.Integr. Psychiat. 399–111.

    Google Scholar 

  • Paul, S. M., Rehavi, M., Skolnick, P., and Goodwin, F. H. (1984). High affinity binding of antidepressants to biogenic amine transport sites in human brain and platelet: Studies in depression. InNeurobiology of Mood Disorders (R. M. Post and J. C. Ballenger, Eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Perlmutter, J. S., and Raichle, M. E. (1986).In vitro orin vivo receptor binding: Where does the truth lie?Ann. Neurol. 19384–385.

    Google Scholar 

  • Peroutka, S. J. (1986). Serotonin receptors. InNeuromethods, Vol. 4. Receptor Binding (A. A. Boulton, G. B. Baker, and P. Hrdina, Eds.), Humana Press, Clifton, N.J.

    Google Scholar 

  • Peroutka, S. J., and Snyder, S. H. (1980a). Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding.Science 21088–90.

    Google Scholar 

  • Peroutka, S. J., and Snyder, S. H. (1980b). Regulation of serotonin2 (5-HT2) receptors labeled with3H-spiroperidol by chronic treatment with the antidepressant amitriptyline.J. Pharmacol. Exp. Ther. 215582–587.

    Google Scholar 

  • Pickar, D., Labarca, R., Doran, A. R., Wolkowitz, O. M., Roy, A., Breier, A., Linnoila, M., and Paul, S. M. (1986). Longitudinal measurement of plasma homovanillic acid levels in schizophrenic patients.Arch. Gen. Psychiat. 43669–676.

    Google Scholar 

  • Pilc, A., and Enna, S. J. (1986). Antidepressant administration has a differential effect on rat brainα 2-adrenoceptor sensitivity to agonists and antagonists.Eur. J. Pharmacol. 132277–282.

    Google Scholar 

  • Pilc, A., and Vetulani, J. (1982a). Attenuation by chronic imipramine treatment of (3H)-clonidine binding to cortical membranes and clonidine-induced hypothermia: Influence of central chemosympathectomy.Brain Res. 238499–504.

    Google Scholar 

  • Pilc, A., and Vetulani, J. (1982b). Depression by chronic electroconvulsive treatment of clonidine hypothermia and clonidine binding to rat cortical membrane.Eur. J. Pharmacol. 80109–113.

    Google Scholar 

  • Piletz, J. E., Schubert, D. S. P., and Halaris, A. (1986). Evaluation of studies on platelet alpha2 adrenoreceptors in depressive illness.Life Sci. 391589–1616.

    Google Scholar 

  • Pinder, R. M. (1986). Antidepressant drugs of the future. InPsychopharmacology: Recent Advances and Future Prospects (S. D. Iversen, Ed.), Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Pittman, K. J., Jakubovic, A., and Fibiger, H. C. (1984). The effects of chronic lithium on behavioural and biochemical indices of dopamine receptor supersensitivity in the rat.Psychopharmacology 82371–377.

    Google Scholar 

  • Plaznik, A., and Kostowski, W. (1987). The effects of antidepressants and electroconvulsive shock on the functioning of the mesolimbic dopaminergic system: A behavioral study.Eur. J. Pharmacol. 135 389–396.

    Google Scholar 

  • Poncelet, M., Martin, P., Danti, S., Simon, P., and Soubie, P. (1987). Noradrenergic rather than GABAergic processes as the common mediation of the antidepressant profile of GABA agonists and imipramine-like drugs in animals.Pharmacol. Biochem. Behav. 28321–326.

    Google Scholar 

  • Porceddu, M. L., Ongini, E., and Biggio, G. (1985). [3H]SCH23390 binding sites increase after chronic blockade of D-1 dopamine receptors.Eur. J. Pharmacol. 118367–370.

    Google Scholar 

  • Price, L. H., Charney, D. S., Rubin, L., and Heninger, G. R. (1986).α 2-Adrenergic receptor function in depression.Arch. Gen. Psychiat. 43849–858.

    Google Scholar 

  • Pyke, R. E., Cohn, J. B., Feighner, J. P., and Smith, W. T. (1983). Open-label studies of adinazolam in severe depression.Psychopharmacol. Bull. 1996–98.

    Google Scholar 

  • Quiron, R., Robitaille, Y., Martial, J., Chabot, J.-G., Lemoine, P., Pilpil, C., and Dalpe, M. (1987). Human brain receptor autoradiography using whole hemisphere sections: A general method that minimizes tissue artefacts.Synapse 1446–454.

    Google Scholar 

  • Quitkin, F. M., Rabin, J. G., Ross, D., and McGrath, P. J. (1984). Duration of antidepressant drug treatment. What is an adequate trial?Arch. Gen. Psychiat. 41238–245.

    Google Scholar 

  • Raisman, R., Briley, M., and Langer, S. Z. (1979). Specific tricyclic antidepressant binding sites in rat brain.Nature 281148–150.

    Google Scholar 

  • Rehavi, M., Paul, S. M., Skolnick, P., and Goodwin, F. K. (1980a). Demostration of specific high-affinity binding sites for3H-imipramine in human brain.Life Sci. 262273–2279.

    Google Scholar 

  • Rehavi, M., Ramot, O., Yavetz, B., and Sokolovsky, M. (1980b). Amitriptyline: Long-term treatment elevatesα-adrenergic and muscarinic receptor binding in mouse brain.Brain Res. 194443–453.

    Google Scholar 

  • Reisine, T., Johnson, R., Wiech, N., Ursulla, R., and Yamamura, H. I. (1982). Rapid desensitization of centralβ-receptors and upregulation ofα 2-receptors following antidepressant treatment. InTypical and Atypical Antidepressants: Molecular Mechanisms (E. Costa and G. Racagni, Eds.), Raven Press, New York.

    Google Scholar 

  • Reynolds, G. P. (1983). Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia.Nature (Lond.)305527–529.

    Google Scholar 

  • Reynolds, G. P., Dowey, L., Rossor, M. N., and Iversen, L. L. (1982). Thioridazine is not specific for limbic dopamine receptors.Lancet 2499.

    Google Scholar 

  • Reynolds, G. P., Czudek, C., Bzowej, N., and Seeman, P. (1987). Dopamine receptor asymmetry in schizophrenia.Lancet 1979.

    Google Scholar 

  • Richelson, E., and Nelson, A. (1984). Antagonism by neuroleptics of neurotransmitter receptors of normal human brainin vitro.Eur J. Pharmacol. 103197–204.

    Google Scholar 

  • Roth, R. H. (1984). CNS dopamine autoreceptors: Distribution, pharmacology, and function.Ann. N.Y. Acad. Sci. 43027–53.

    Google Scholar 

  • Rudorfer, M. V., and Potter, W. Z. (1985). Metabolism of drugs in affective disorders. InPharmacotherapy of Affective Disorders: Theory and Practice (W. G. Dewhurst and G. B. Baker, Eds.), Croom Helm, London.

    Google Scholar 

  • Rupniak, N. M. J., Kilpatrick, G., Hall, M. D., Jenner, P., and Marsden, C. D. (1984). Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats.Psychopharmacology 84512–519.

    Google Scholar 

  • Rupniak, N. M. J., Hall, M. D., Kell, E., Fleminger, S., Kilpatrick, G., Jenner, P., and Marsden, C. D. (1985). Mesolimbic dopamine function is not altered during continuous chronic treatment of rats with typical or atypical neuroleptic drugs.J. Neural. Transm. 62249–266.

    Google Scholar 

  • Rupniak, N. M. J., Briggs, R. S., Petersen, M. M., Mann, S., Reavill, C., Jenner, P., and Marsden, C. D. (1986a). Differential alterations in striatal acetylcholine function in rats during 12 months' continuous administration of haloperidol, sulpiride, or clozapine.Clin. Neuropharmacol. 9282–292.

    Google Scholar 

  • Rupniak, N. M. J., Jenner, P., and Marsden, C. D. (1986b). Acute dystonia induced by neuroleptic drugs.Psychopharmacology 88403–419.

    Google Scholar 

  • Rupniak, N. M. J., Prestwich, S. A., Horton, R. W., Jenner, P., and Marsden, C. D. (1987). Alterations in cerebral glutamic acid decarboxylase and [3H]-flunitrazepam binding during continuous treatment of rats for up to 1 year with haloperidol, sulpiride or clozapine.J. Neural. Transm. 68113–125.

    Google Scholar 

  • Russell, V. A., Nurse, B., Lamm, M. C. L., and Taljaard, J. J. F. (1987). Effect of chronic antidepressant treatment on noradrenergic modulation of [3H]dopamine release from rat nucleus accumbens and striatal slices.Brain Res. 41078–82.

    Google Scholar 

  • Sachar, E. J. (1978). Neuroendocrine response to psychotropic drugs. InPsychopharmacology: A Generation of Progress (M. A. Lipton, A. DiMascio, and K. F. Killam, Eds.), Raven Press, New York.

    Google Scholar 

  • Saito, K., Kurihara, M., Cruciani, R., Potter, W. Z., and Saavedra, J. M. (1988). Characterization ofβ 1 andβ 2-adrenoceptor subtypes in the rat atrioventricular node by quantitative autoradiography.Circ. Res. 62173–177.

    Google Scholar 

  • Saller, C. F., and Salama, A. I. (1986). 3-Methoxytyramine accumulation: Effects of typical neuroleptics and various atypical compounds.Nauyn Schmiedeberg Arch. Pharmacol. 334125–132.

    Google Scholar 

  • Schelkunov, E. L. (1967). Adrenergic effect of chronic administration of neuroleptics.Nature 2141210–1213.

    Google Scholar 

  • Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence.Am. J. Psychiat. 122509–522.

    Google Scholar 

  • Schoemaker, H., and Langer, S. Z. (1988). High affinity binding of antidepressants to platelets and brain tissue. InNeuromethods, Vol. 10. Analysis of Psychiatric Drugs (A. A. Boulton, G. B. Baker, and R. T. Coutts, Eds.), Humana Press, Clifton, N.J.

    Google Scholar 

  • Schultz, J. E., Siggins, G. R., and Schocker, F. W. (1981). Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: Electrophysiological and biochemical comparison.J. Pharmacol. Exp. Ther. 21628–38.

    Google Scholar 

  • Scott, J. A., and Crews, F. T. (1986). Down-regulation of serotonin2, but not of beta-adrenergic receptors during chronic treatment with amitriptyline is independent of stimulation of serotonin2 and beta-adrenergic receptors.Neuropharmacology 251301–1306.

    Google Scholar 

  • Scuvee-Moreau, J. (1981).Contribution Experimentale a l'Etude du mode d'Action des Substances Antidepressives, D.Sc. thesis, Universite de Liege, Liege.

    Google Scholar 

  • Scuvee-Moureau, J., and Dresse, A. R. (1983). Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat.Eur. J. Pharmacol. 57219–225.

    Google Scholar 

  • Scuvee-Moureau, J. J., and Svensson, T. H. (1982). Sensitivityin vivo of centralα 2- and opiate receptors after chronic treatment with various antidepressants.J. Neural. Transm. 5451–63.

    Google Scholar 

  • Sedvall, G., Farde, L., Persson, A., and Wiesel, F.-A. (1986a). Imaging of neurotransmitter receptors in the living human brain.Arch. Gen. Psychiat. 43995–1005.

    Google Scholar 

  • Sedvall, G., Farde, L., Stone-Elander, S., and Halldin, C. (1986b). Dopamine D1-receptor binding in the living human brain. InNeurobiology of Central D-1-Dopamine Receptors. (G. R. Breese and I. Creese, Eds.), Plenum, New York.

    Google Scholar 

  • Sedvall, G., Ehrin, E., and Farde, L. (1986c). Stereoselective binding of11C-labelled piquindone (Ro 22-1319) to dopamine-D2 receptors in the living human brain.Human Psychopharmacol. 223–30.

    Google Scholar 

  • Seeman, P. (1980). Brain dopamine receptors.Pharmacol. Rev. 32229–313.

    Google Scholar 

  • Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia.Synapse 1133–152.

    Google Scholar 

  • Seeman, P., and Grigoriadis, D. (1985). Dopamine D2 receptor dissociation constant for spiperone: Identical values using3H-labeled agonist or3H-labeled antagonist.Biochem. Pharmacol. 344065–4066.

    Google Scholar 

  • Seeman, P., and Grigoriadis, D. (1987). Dopamine receptors in brain and periphery.Neurochem. Int. 101–25.

    Google Scholar 

  • Seeman, P., and Ulpian, C. (1983). Neuroleptics have identical potencies in human brain limic and putamen regions.Eur. J. Pharmacol. 15145–148.

    Google Scholar 

  • Seeman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. P., and Tourtellotte, W. W. (1984). Bimodal distribution of dopamine receptor densities in brains of schizophrenics.Science 225728–731.

    Google Scholar 

  • Seeman, P., Ulpian, C., Grigoriadis, D., Pri-Bar, I., and Buchman, O. (1985a). Conversion of dopamine D1 receptor from high to low affinity for dopamine.Biochem. Pharmacol. 34151–154.

    Google Scholar 

  • Seeman, P., Watanabe, M., Grigoriadis, D., Tedesco, J. L., George, S. R., Svensson, U., Nilsson, J. L. G., and Meumeyer, J. L. (1985b). Dopamine D2 receptor binding sites for agonists: A tetrahedral model.Mol. Pharmacol. 28391–399.

    Google Scholar 

  • Selden, E. M., Convery, M. E., Stites, M. M., and Domino, E. F. (1986). Pharmacologic evidence that high dose chronic amitriptyline and desipramine down-regulateα 2-receptor-mediated hypothermia in the rat.Arch. Int. Pharmacodyn. 281198–208.

    Google Scholar 

  • Sethy, V. H., and Hodges, D. H. (1982). Role of beta-adrenergic receptors in the antidepressant activity of alprazolam.Res. Comm. Chem. Pathol. Pharmacol. 36329–332.

    Google Scholar 

  • Sethy, V. H., Carlsson, R. W., and Harris, D. W. (1983). Effect of chronic antidepressant treatment onα 2-adrenoreceptors.Drug Dev. Res. 3287–291.

    Google Scholar 

  • Siever, L. J., Guttmacher, L. B., and Murphy, D. L. (1984a). Serotonin receptors: Evaluation of their possible role in affective disorders. InNeurobiology of Mood Disorders (R. M. Post and J. C. Ballenger, Eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Siever, L. J., Uhde, T. W., and Murphy, D. L. (1984b). Strategies for assessment of noradrenergic receptor function in patients with affective disorders. InNeurobiology of Mood Disorders (R. M. Post and J. L. Ballenger, Eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Skirboll, L. R., and Bunney, B. S. (1979). The effects of acute and chronic haloperidol treatment on spontaneously firing neurons in the caudate nucleus of the rat.Life Sci. 251419–1434.

    Google Scholar 

  • Smialowski, A., and Bijak, M. (1986). Repeated imipramine treatment increases the responsivity of the rat hippocampus to dopamine. Anin vitro study.J. Neural. Transm. 66189–196.

    Google Scholar 

  • Snyder, S. H., and Peroutka, S. J. (1984). Antidepressants and neurotransmitter receptors. InNeurobiology of Mood Disorders (R. M. Post and J. C. Ballenger, Eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Spyraki, C., and Fibiger, H. C. (1981). Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine.Eur. J. Pharmacol. 74195.

    Google Scholar 

  • Staunton, D. A., Magistretti, P. J., Koob, G. F., Shoemaker, W. J., and Bloom, F. E. (1982). Dopaminergic supersensitivity induced by denervation and chronic receptor blockade is additive.Nature 29972–74.

    Google Scholar 

  • Stockmeier, C. A., McLeskey, S. W., Blendy, J. A., Armstrong, N. R., and Kellar, K. J. (1987). Electroconvulsive shock but not antidepressant drugs increasesα 1-adrenoceptor binding sites in rat brain.Eur. J. Pharmacol. 139259–266.

    Google Scholar 

  • Stoff, J. C., and Kebabian, J. W. (1984). Two dopamine receptors: Biochemistry, physiology and pharmacology.Life Sci. 352281–2296.

    Google Scholar 

  • Stone, E. A., Platt, J. E., Herrera, A. S., and Kirk, K. L. (1986). Effect of repeated restraint stress, desmethylimipramine or adrenocorticotropin on thealpha andbeta adrenergic components of the cyclic AMP response to norepinephrine in rat brain slices.J. Pharmacol. Exp. Ther. 237702–707.

    Google Scholar 

  • Sugrue, M. F. (1983). Do antidepressants possess a common mechanism of action?Biochem. Pharmacol. 321811–1817.

    Google Scholar 

  • Sulser, F. (1982). Regulation and adaptation of central norepinephrine receptor systems: Modification by antidepressant treatments.Psychiat. J. Univ. Ottawa 7196–203.

    Google Scholar 

  • Sulser, F. (1986). Update on neuroreceptor mechanisms and their implication for the pharmacotherapy of affective disorders.J. Clin. Psychiat. 4713–18.

    Google Scholar 

  • Svennson, T. H., and Usdin, T. (1978). Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants:α-Receptor mediation.Science 2021089–1091.

    Google Scholar 

  • Swart, J. A. A., and Korf, J. (1987).In vivo dopamine receptor assessment for clinical studies using positron emission tomography.Biochem. Pharmacol. 362241–2250.

    Google Scholar 

  • Szekely, A. M., Barbaccia, M. L., and Costa, E. (1987). Effect of a protracted antidepressant treatment on signal transduction and [3H](−)-baclofen binding at GABAB receptors.J. Pharmacol. Exp. Ther. 243155–159.

    Google Scholar 

  • Tarsy, D., Baldessarini, R. J. (1973). Pharmacologically induced behavioural supersensitivity to apomorphine.Nature New Biol. 245262–263.

    Google Scholar 

  • Tepper, J. M., Nakamura, S., Spanis, C. W., Squire, L. R., and Young, S. J. (1982). Subsensitivity of catecholaminergic neurons to direct agonists after single or repeated electroconvulsive shock.Biol. Psychiat. 171059–1070.

    Google Scholar 

  • Tharp, M. D., Hoffmann, B. B., and Lefkovitz, R. J. (1981).α-Adrenergic receptors in human adipocyte membranes: Direct determination by [3H]yohimbine binding.J. Clin. Endocrinol. Metab. 52709–714.

    Google Scholar 

  • Theodorou, A., Gommeren, W., Clow, A., Leyson, J., Jenner, P., and Marsden, C. D. (1981). Chronic neuroleptic treatment specifically alters the number of dopamine receptors in rat brain.Life Sci. 281621–1627.

    Google Scholar 

  • Timmermans, P. B., and Thooley, M. J. (1987). Autoreceptors in the central nervous system.Med. Res. Rev. 7307–332.

    Google Scholar 

  • Turmel, A., and de Montigny, C. (1984). Sensitization of rat forebrain neurons to serotonin by adinazolam, an antidepressant triazolobenzodiazepine.Eur. J. Pharmacol. 99241–244.

    Google Scholar 

  • Uhde, T. W., Siever, L. J., and Post, R. M. (1984). Clonidine: Acute challenge and clinical trial paradigms for the investigation and treatment of anxiety disorders, affective illness and pain syndromes. InNeurobiology of Mood Disorders (R. M. Post and J. C. Ballenger, Eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Vaccheri, A., Dall'Olio, R., Gandolfi, O., Roncada, P., and Montanaro, N. (1987). Enhanced stereotyped response to apomorphine after chronic D-1 blockade with SCH 23390.Psychopharmacology 91394–396.

    Google Scholar 

  • Van Rossum, J. M. (1967). The significance of dopamine-receptor blockade for the action of neuroleptic drugs. InProceedings of the 5th Collegium Internationale Neuropsychophar-macologicum (H. Brill, J. O. Cole, P. Deniker, H. Hippius, and P. B. Bradley, Eds.), pp. 321–329.

  • Vetulani, J., and Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating systems in limbic forebrain.Nature 257495–496.

    Google Scholar 

  • Vetulani, J., Dingall, J. V., and Sulser, F. (1976). A possible common mechanism of action of antidepressant treatments.Nauyn Schmiedeberg Arch. Pharmacol. 293109–114.

    Google Scholar 

  • Vetulani, J., Antkiewicz-Michaluk, L., Rokosz-Pilc, A., and Pilc, A. (1983). Chronic electroconvulsive treatment enhances the density of [3H]prazosin binding sites in the central nervous system of the rat.Brain Res. 275392–395.

    Google Scholar 

  • vonVoigtlander, P. F., Losey, E. G., and Triezenberg, H. J. (1975). Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment.J. Pharmacol. Exp. Ther. 193 88–94.

    Google Scholar 

  • Waddington, J. L. (1986). Bromocriptine, selective D2 dopamine receptor agonists and D1 dopaminergic tone.Trends Pharmacol. Sci. 7223–224.

    Google Scholar 

  • Wagner, H. N., Burns, D., Dannals, F. R., Wong, D. F., Langstrom, B., Duelfer, T., Frost, J. J., Ravert, H. T., Links, J. M., Rosenbloom, S. H., Lukas, S. E., Kramer, A. V., and Kuhar, M. J. (1983). Imaging dopamine receptors in the human brain by positron emission tomography.Science 2211264–1266.

    Google Scholar 

  • Wagner, A., Anberg-Wistedt, A., Asberg, M., Bertilsson, L., Martensson B., and Montero, D. (1987). Effects of antidepressant treatments on platelet tritiated imipramine binding in major depressive disorder.Arch. Gen. Psychiat. 44870–877.

    Google Scholar 

  • Wang, R. Y., and Aghajanian, G. K. (1980). Enhanced sensitivity of amygdaloid neurons to serotonin and norepinephrine after chronic antidepressant treatment.Commun. Psychopharmacol. 483–90.

    Google Scholar 

  • White, F. J., and Wang, R. Y. (1983). Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons.Science 2211054–1056.

    Google Scholar 

  • Williams, L. T., Snyderman, R., and Leftowitz, R. J. (1976). Identification ofβ-adrenergic receptors in human lymphocytes by [3H]alprendol binding.J. Clin. Invest. 57149–155.

    Google Scholar 

  • Wolfe, B. B., Harden, T. K., Sporn, J. R., and Molinoff, P. B. (1978). Presynaptic modulation of beta-adrenergic receptors in rat cerebral cortex after treatment with antidepressants.J. Pharmacol. Exp. Ther. 207446–457.

    Google Scholar 

  • Wong, D. F., Wagner, H. N., Jr., Dannals, R. F., Links, J. M., Frost, J. J., Ravert, H. T., Wilson, A. A., Rosenbaum, A. E., Gjedde, A., Douglass, K. H., Petronis, J. D., Folstein, M. F., Toung, J. K. T., Burns, H. D., and Kuhar, M. J. (1984). Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain.Science 2261393–1396.

    Google Scholar 

  • Wong, D. F., Gjedde, A., Wagner, H. N., Jr., Dannals, R. F., Douglass, K. H., Links, J. M., and Kuhar, M. J. (1986a). Quantification of neuroreceptors in the living human brain. II. Inhibition studies of receptor density and affinity.J. Cereb. Blood Flow Metab. 6147–153.

    Google Scholar 

  • Wong, D. F., Wagner, H. N., Jr., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Broussolle, E. P., Ravert, H. T., Wilson, A. A., Toung, J. K. T., Malat, J., Williams, J. A., O'Tuama, L. A., Snyder, S. H., Kuhar, M. J., and Gjedde, A. (1986b). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics.Science 2341558–1563.

    Google Scholar 

  • Wood, K., Whiting, K., and Coppen, A. (1986). Lymphocyte beta-adrenergic receptor density of patients with recurrent affective illness.J. Affect. Dis. 103–8.

    Google Scholar 

  • Zsilla, G., Barbaccia, M. L., Gandolfi, O., Knoll, F., and Costa, E. (1983). (1)-Deprenyl, a selective MAO “B” inhibitor, increases3H-imipramine binding and decreasesβ-adrenergic receptor function.Eur. J. Pharmacol. 89111–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.B., Greenshaw, A.J. Effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system. Cell Mol Neurobiol 9, 1–44 (1989). https://doi.org/10.1007/BF00711441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711441

Key words

Navigation