Skip to main content

Antidepressants: Pharmacology and Biochemistry

  • Reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

The first antidepressants, discovered in the 1950s, and any successors directly target the monoaminergic brain systems. Problems in this group, however, are low effectiveness (only two-thirds of those treated responded to the therapy) and a significantly delayed onset of action of weeks to months. New findings on the pathophysiology of depression affecting the GABAergic and glutamatergic systems give hope for the development of rapid-acting and effective antidepressants.

Only understanding the basics of antidepressant pharmacotherapy makes it possible to comprehend new research approaches in this field. Moreover, the specialist knowledge makes it easier for clinicians to make an adequate and rational choice of the pharmaceuticals they use. By knowing the mechanism of action and the route of decomposition of the antidepressant selected, adverse drug reactions can be anticipated and avoided wherever possible.

For the reasons mentioned above, already known antidepressants (tricyclics, SSRI, SNRI, NRI and MAO inhibitors), as well as newer antidepressant-acting candidates (ketamine, scopolamine, rapastinel), will be discussed in this chapter with regard to their pharmacology and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine/serotonin

5-HT1A/5-HT1D/5-HT2/5-HT2A/5-HT2C/5-HT3:

Serotonin receptors; subtypes 1A/1D/2/2A/2C/3

α1/α2/β:

Adrenergic receptors; subtypes α1/α2/β

AC:

Adenylate cyclase

Akt:

Protein kinase B

AMP:

Adenosine monophosphate

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATP:

Adenosine Triphosphate

BDNF:

Brain-derived neurotrophic factor

CA:

Cornu ammonis

Ca2+:

Calcium

CaMK:

Ca2+/calmodulin-dependent protein kinase

cAMP:

Cyclic adenosine monophosphate

Cl−:

Chloride

CNS:

Central Nervous System

COMT:

Catechol-O-methyltransferase

CREB:

cAMP response element-binding protein

D1/D2:

Dopamine receptors; subtypes 1/subtype 2

DA:

Dopamine

DDC:

DOPA decarboxylase

DG:

Dentate gyrus

DOPA:

L-3,4-dihydroxyphenylalanine/levodopa

DOPAC:

3,4-Dihydroxyphenylacetic acid

ECT:

Electroconvulsive therapy

eEF2:

Eukaryotic elongation factor 2

Ent:

Entorhinal cortex

FDA:

U.S. Food and Drug Administration

FST:

Forced swim test

GABA:

Gamma-Aminobutyric acid

GABAA:

GABA receptor; subtype A

H1:

Histamine receptor; subtype 1

HVA:

Homovanillic acid

Ki:

Inhibition constant

LH:

Lethargic mouse model

LHb:

Lateral habenula

LTP:

Long-term potentiation

M:

Muscarinic acetylcholine receptor

MAO-A/MAO-B:

Monoamine oxidase; subtypes A/B

MAPK:

Mitogen-activated protein kinase

MDD:

Major depressive disorder

mGluR2/3:

Metabotropic glutamate receptors; subtypes 2/3

mPFC:

Medial prefrontal cortex

MT:

Melatonin

MT1/MT2:

Melatonin receptors; subtypes 1/2

mTORC1:

Mammalian target of rapamycin complex 1

Na+:

Sodium

NDRI:

Norepinephrine dopamine reuptake inhibitor

NE:

Norepinephrine

NGF:

Nerve growth factor

NMDA :

N-Methyl-d-aspartic acid

nmol:

Nanomolar

NRI:

Selective norepinephrine reuptake inhibitor

NSFT:

Near the individual spatial frequency threshold

PDE-4:

Phosphodiesterase

PKA/PKC:

Protein kinases; subtypes A/C

PLC:

Phospholipase C

RNA:

Ribonucleic acid

RR:

Blood pressure

RCT:

Randomised controlled trial

Rsk:

Ribosomal s6 kinase

SNRI:

Serotonin norepinephrine reuptake inhibitor

SSA:

Succinate semialdehyde

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

TH:

Tyrosine hydroxylase

TrkB:

Tropomyosin receptor kinase B

Tyr:

Tyrosine

VGCC:

Voltage-gated Ca2+ channel

References

  • Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC. Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry. 2006;59(3):244–51.

    CAS  PubMed  Google Scholar 

  • Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, et al. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry. 2013;18(12):1265–72.

    CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.

    CAS  PubMed  Google Scholar 

  • Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7:137–51.

    CAS  PubMed  Google Scholar 

  • Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry. 2009;14(8):764–73, 739.

    CAS  PubMed  Google Scholar 

  • Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72–9.

    PubMed  Google Scholar 

  • Burgdorf J, Zhang X, Nicholson KL, Balster RL, Leander JD, Stanton PK, et al. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology. 2013;38(5):729–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castrén E, Hen R. Neuronal plasticity and antidepressant actions. Trends Neurosci. 2013;36(5):259–67.

    PubMed  PubMed Central  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OFX, Jay TM, Sousa N. The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci. 2007;27(11):2781–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry. 2001;49:753–62.

    CAS  PubMed  Google Scholar 

  • Chen JL, Lin WC, Cha JW, So PT, Kubota Y, Nedivi E. Structural basis for the role of inhibition in facilitating adult brain plasticity. Nat Neurosci. 2011;14(5):587–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowen PJ. Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci. 2008;29(9):433–6.

    CAS  PubMed  Google Scholar 

  • de Simoni MG, de Luigi A, Clavenna A, Manfridi A. In vivo studies on the enhancement of serotonin reuptake by tianeptine. Brain Res. 1992;574(1–2):93–7.

    PubMed  Google Scholar 

  • Dranovsky A, Hen R. Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry. 2006;59(12):1136–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drevets WC, Furey ML. Replication of scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry. 2010;67(5):432–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS. Depression: a case of neuronal life and death? Biol Psychiatry. 2004;56(3):140–5.

    PubMed  Google Scholar 

  • Duman RS. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci. 2014;16:11–27.

    PubMed  PubMed Central  Google Scholar 

  • Duman RS. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000Res. 2018;7:F1000.

    PubMed  PubMed Central  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597–606.

    CAS  PubMed  Google Scholar 

  • Duman RS, Malberg J, Thorne J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry. 1999;46:1181–91.

    CAS  PubMed  Google Scholar 

  • Duncan GE, Johnson KB, Breese GR. Topographic patterns of brain activity in response to swim stress assessment by 2-deoxyglucose uptake and expression of fos-like immunreacivity. J Neurosci. 1993;13:3932–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebmeier KP, Donaghex C, Steele JD. Recent developments and current controversies in depression. Lancet. 2006;367:153–67.

    PubMed  Google Scholar 

  • Ellis JS, Zarate CA, Luckenbaugh DA, Furey ML. Antidepressant treatment history as a predictor of response to scopolamine: clinical implications. J Affect Disord. 2014;162:39–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frazer A. Antidepressants. J Clin Psychiatry. 1997;58(Suppl 6):9–25.

    CAS  PubMed  Google Scholar 

  • Friedland K, Silani G, Schuwald A, Stockburger C, Koch E, Nöldner M, Müller WE. Neurotrophic properties of Silexan, an essential oil from the flowers of lavender-preclinical evidence for antidepressant-like properties. Pharmacopsychiatry. 2021;54(1):37–46.

    CAS  PubMed  Google Scholar 

  • Fritze J, Koronakis P, Konradi C, Riederer P. Isoelectric focusing of monoamine oxidase subtypes as identified by MAO inhibitors. Eur J Pharmacol Mol Pharmacol. 1989;172(2):147–54.

    CAS  Google Scholar 

  • Fuchs E, Simon M, Schmelting B. Pharmacology of a new antidepressant: benefit of the implication of the melatonergic system. Int Clin Psychopharmacol. 2006;21(Suppl 1):17–20.

    Google Scholar 

  • Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry. 2006;63(10):1121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garay RP, Zarate CA, Charpeaud T, Citrome L, Correll CU, Hameg A, Llorca P-M. Investigational drugs in recent clinical trials for treatment-resistant depression. Expert Rev Neurother. 2017;17(6):593–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhard DM, Wohleb ES, Duman RS. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today. 2016;21(3):454–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, Duman RS. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry. 2018;83(1):29–37.

    CAS  PubMed  Google Scholar 

  • Gillin JC, Sutton L, Ruiz C, Darko D, Golshan S, Risch SC, Janowsky D. The effects of scopolamine on sleep and mood in depressed patients with a history of alcoholism and a normal comparison group. Biol Psychiatry. 1991;30(2):157–69.

    CAS  PubMed  Google Scholar 

  • Hajszan T, Szigeti-Buck K, Sallam NL, Bober J, Parducz A, Maclusky NJ, et al. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats. Biol Psychiatry. 2010;67(2):168–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heiser JH, Schuwald AM, Sillani G, Ye L, Müller WE, Leuner K. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. J Neurochem. 2013;127(3):303–13.

    CAS  PubMed  Google Scholar 

  • Hope BT, Kelz MB, Duman RS, Nestler EJ. Chronic electroconvulsive seizure (ECS) treatment results in expression of a long-lasting AP-1 complex in brain with altered composition and characteristics. J Neurosci. 1994;14(7):4318–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, Malykhin NV. Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry. 2013;74(1):62–8.

    PubMed  Google Scholar 

  • Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur J Pharmacol. 2014;727:167–73.

    CAS  PubMed  Google Scholar 

  • Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agústsdóttir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334(6063):1731–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasper S, McEwen BS. Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs. 2008;22(1):15–26.

    CAS  PubMed  Google Scholar 

  • Kato T, Fogaça MV, Deyama S, Li X-Y, Fukumoto K, Duman RS. BDNF release and signaling are required for the antidepressant actions of GLYX-13. Mol Psychiatry. 2018;23(10):2007–17.

    CAS  PubMed  Google Scholar 

  • Kielholz P. Diagnose und Therapie der Depression für den Praktiker. 3rd ed. München: J. F. Lehmanns Verlag; 1971.

    Google Scholar 

  • Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, Suzuki H. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci U S A. 2010;107(18):8434–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron. 2019;101(5):774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard BE. Mechanisms of action of antidepressants. CNS Drugs. 1995;4(Suppl 1):1–12.

    CAS  Google Scholar 

  • Leonard BE. New approaches to the treatment of depression. J Clin Psychiatry. 1996;57(Suppl 4):26–33.

    CAS  PubMed  Google Scholar 

  • Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology. 2018;235(8):2195–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levy MJF, Boulle F, Emerit MB, Poilbout C, Steinbusch HWM, van den Hove DLA, et al. 5-HTT independent effects of fluoxetine on neuroplasticity. Sci Rep. 2019;9(1):6311.

    PubMed  PubMed Central  Google Scholar 

  • Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond. Trends Pharmacol Sci. 2005;26(12):631–8.

    CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, de Pasquale R, O’Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–8.

    CAS  PubMed  Google Scholar 

  • McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22.

    CAS  PubMed  Google Scholar 

  • McEwen BS, Chattarji S, Diamond DM, Jay TM, Reagan LP, Svenningsson P, Fuchs E. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry. 2010;15(3):237–49.

    CAS  PubMed  Google Scholar 

  • Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011;7(Suppl 1):9–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morinobu S, Nibuya M, Duman RS. Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex. Neuropsychopharmacology. 1995;12(3):221–8.

    CAS  PubMed  Google Scholar 

  • Moskal JR, Burgdorf JS, Stanton PK, Kroes RA, Disterhoft JF, Burch RM, Khan MA. The development of Rapastinel (formerly GLYX-13); a rapid acting and long lasting antidepressant. Curr Neuropharmacol. 2017;15(1):47–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller WE. Wirkungsmechanismus niedrigdosierter Neuroleptika bei Angst und Depression. In: Pöldinger W, editor. Niedrigdosierte Neuroleptika bei ängstlich-depressiven Zustandsbildern und psychosomatischen Erkrankungen. Karlsruhe: Braun; 1991. p. 24–38.

    Google Scholar 

  • Müller WE. Current St John’s wort research from mode of action to clinical efficacy. Pharmacol Res. 2003;47(2):101–9.

    PubMed  Google Scholar 

  • Müller WE. Antidepressiva und kognitive Dysfunktion: die Rolle von Vortioxetin. Psychopharmakotherapie. 2015;22:177–88.

    Google Scholar 

  • Müller WE. Normalisierung gestörter Neuroplastizitätsmechanismen als gemeinsame Endstrecke im Wirkungsmechanismus von Antidepressiva: Die besondere Rolle von Tianeptin. Psychopharmakotherapie. 2016;23(6):230–8.

    Google Scholar 

  • Müller WE, Eckert A. Psychopharmakotherapie – pharmakologische Grundlagen. In: Möller H-J, Laux G, Kapfhammer H-P, editors. Psychiatrie, Psychosomatik, Psychotherapie. 5th ed. Springer; 2017. p. 749–93.

    Google Scholar 

  • Nemeroff CB, Owens MJ. The role of serotonin in the pathophysiology of depression: as important as ever. Clin Chem. 2009;55(8):1578–9.

    CAS  PubMed  Google Scholar 

  • Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172(10):950–66.

    PubMed  Google Scholar 

  • Okada M, Kawano Y, Fukuyama K, Motomura E, Shiroyama T. Candidate strategies for development of a rapid-acting antidepressant class that does not result in neuropsychiatric adverse effects: prevention of ketamine-induced neuropsychiatric adverse reactions. Int J Mol Sci. 2020;21(21):7951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otte C. Depression und kognitive Dysfunktion. Psychopharmakotherapie. 2014;21:40–9.

    Google Scholar 

  • Patrício P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, et al. Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology. 2015;40(2):338–49.

    PubMed  Google Scholar 

  • Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109.

    CAS  PubMed  Google Scholar 

  • Preskorn S, Macaluso M, Mehra DOV, Zammit G, Moskal JR, Burch RM. Randomized proof of concept trial of GLYX-13, an N-methyl-d-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract. 2015;21(2):140–9.

    PubMed  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WGM, Liston C, Hof PR, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20.

    PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45(9):1085–98.

    CAS  PubMed  Google Scholar 

  • Reagan LP, Hendry RM, Reznikov LR, Piroli GG, Wood GE, McEwen BS, Grillo CA. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala. Eur J Pharmacol. 2007;565(1–3):68–75.

    CAS  PubMed  Google Scholar 

  • Riederer P, Laux G, Pöldinger W. Neuro-Psychopharmaka: Ein Therapie-Handbuch. 2nd ed. Wien/New York: Springer; 2002.

    Google Scholar 

  • Rocher C, Spedding M, Munoz C, Jay TM. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex. 2004;14(2):224–9.

    PubMed  Google Scholar 

  • Sanacora G, Frye MA, McDonald W, Mathew SJ, Turner MS, Schatzberg AF, et al. A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiat. 2017;74(4):399–405.

    Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805–9.

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci. 1985;5(5):1222–7.

    Google Scholar 

  • Soares JC, Mann JJ. The anatomy of mood disorders–review of structural neuroimaging studies. Biol Psychiatry. 1997;41(1):86–106.

    CAS  PubMed  Google Scholar 

  • Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6(4):159–66.

    PubMed  PubMed Central  Google Scholar 

  • Stassen HH, Angst J, Delini-Stula A. Delayed onset of action of antidepressant drugs? Survey of results of Zurich meta-analyses. Pharmacopsychiatry. 1996;29(3):87–96.

    CAS  PubMed  Google Scholar 

  • Torres G, Horowitz JM, Laflamme N, Rivest S. Fluoxetine induces the transcription of genes encoding c-fos, corticotropin-releasing factor and its type 1 receptor in rat brain. Neuroscience. 1998;87(2):463–77.

    CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration. FDA approves new nasal spray medication for treatment-resistant depression. 2019. https://www.fda.gov/news-events/press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified. Accessed 26 Mar 2021.

  • Voleti B, Navarria A, Liu R-J, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry. 2013;74(10):742–9.

    CAS  PubMed  Google Scholar 

  • Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28(6):1374–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson ST, Toprak M, Turner MS, Levine SP, Katz RB, Sanacora G. A survey of the clinical, off-label use of ketamine as a treatment for psychiatric disorders. Am J Psychiatry. 2017;174(7):695–6.

    PubMed  PubMed Central  Google Scholar 

  • Willner P. The validity of animal models of depression. Psychopharmacology. 1984;83(1):1–16.

    CAS  PubMed  Google Scholar 

  • Wohleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, Duman RS. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest. 2016;126(7):2482–94.

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317–22.

    CAS  PubMed  Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Friedland .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Efinger, V., Müller, W.E., Friedland, K. (2022). Antidepressants: Pharmacology and Biochemistry. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-62059-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62059-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62058-5

  • Online ISBN: 978-3-030-62059-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics