Skip to main content
Log in

Binding sites for brain trace amines

  • Review
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Neurochemical, neuropharmacological, and neurophysiological sudies suggest that some of the so-called trace amines may have a role in the modulation of neurotransmission. This review examines the possible existence and characterization of brain binding sites for the trace amines.

  2. 2.

    The results of radioligand binding studies carried out so far suggest the existence of tryptamine binding sites that possibly constitute a true functional receptor. This is supported by evidence obtained from the saturation studies, drug-mediated inhibition of binding, and the changes in the number of sites induced by pharmacological and lesion studies. In addition, the existence of a functional tryptamine binding site is supported by the increased neurophysiological responses of tryptamine obtained from the striatum of rat with unilateral substantia nigra lesions.

  3. 3.

    It has been shown that the brain contains saturable binding sites forp-tyramine that appear to be related to the transport of dopamine into synaptic vesicles. There are, however, some questions with respect to the homogenization technique employed and some inconsistencies with respect to the number of binding sites estimated in neuronal membrane preparations.

  4. 4.

    The existence ofp-octopamine binding sites has been demonstrated in crude membranes obtained from fruitflies but not shown so far in vertebrates.

  5. 5.

    The presence of brain binding sites forβ-phenylethylamine are suggested but they are not so well defined and its physiological implication remains to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altar, C. A., Wasley, A. M., and Martin, L. L. (1986). Autoradiographic localization and pharmacology of unique [3H]tryptamine binding sites in rat brain.Neuroscience 17263–273.

    Google Scholar 

  • Axelrod, J., and Saavedra, J. M. (1974). Octopamine, phenylethanolamine, phenylethylamine and tryptamine in the brain. InAromatic Amino Acids in the Brain Ciba Foundation Symposium 2 (New Series), Elsevier-Excerpta Medica, North-Holland, Amsterdam, pp. 51–59.

    Google Scholar 

  • Baldessarini, R. J. (1978). Trace amines and alternative neurotransmitters in the central nervous system.Biochem. Pharmacol. 27621–626.

    Google Scholar 

  • Baldessarini, R. J., and Vogt, M. J. (1971). The uptake and subcellular distribution of aromatic amines in the brain of the rat.J. Neurochem. 182519–2533.

    Google Scholar 

  • Boulton, A. A. (1974). Amines and theories in psychiatry.Lancet 252–53.

    Google Scholar 

  • Boulton, A. A. (1976). Identification, distribution, metabolism and function ofmeta- andpara-tyramine, phenylethylamine and tryptamine in brain.Adv. Biochem. Psychopharmacol. 1557–67.

    Google Scholar 

  • Boulton, A. A., and Baker, G. E. (1975). The subcellular distribution ofβ-phenylethylamine, tyramine and tryptamine in rat brain.J. Neurochem. 25477–481.

    Google Scholar 

  • Boulton, A. A., and Juorio, A. V. (1982). Brain trace amines.In Handbook of Neurochemistry, Vol. 1, 2nd ed. (A. Lajtha, ed.), Plenum, New York and London, pp. 189–221.

    Google Scholar 

  • Boulton, A. A., Wu, P. H., and Philips, S. (1972). Binding of some primary aromatic amines to certain rat brain particulate fractions.Can. J. Biochem. 501210–1218.

    Google Scholar 

  • Bruning, G., and Rommelspacher, H. (1984). High affinity [3H]tryptamine binding sites in various organs of the rat.Life Sci. 341441–1446.

    Google Scholar 

  • Cascio, C. S., and Kellar, J. K. (1983). Characterization of [3H]tryptamine binding sites in brain.Eur. J. Pharmacol. 9531–39.

    Google Scholar 

  • Cascio, C. S., and Kellar, K. J. (1986). Effect of pargyline, reserpine and neurotoxin lesions on [3H]tryptamine binding sites in rat brain.Eur. J. Pharmacol. 120101–105.

    Google Scholar 

  • Charlton, K. G., Johnson, T. D., Maurice, R. W., and Clarke, D. E. (1985). Kynuramine: High affinity for [3H]tryptamine binding sites.Eur. J. Pharmacol. 106661–664.

    Google Scholar 

  • Clineschmidt, B. V., and Lotti, V. J. (1974). Indolamine antagonists: Relative potencies as inhibitors of tryptamine- and 5-hydroxytryptophan-evoked responses.Brit. J. Pharmacol. 50311–313.

    Google Scholar 

  • Cohen, A. I., and Blazynski, C. (1987). Tryptamine and some related molecules block the accumulation of a light-sensitive pool of cyclic AMP in the dark-adapted, dark-incubated mouse retina.J. Nuerochem. 48729–737.

    Google Scholar 

  • Conn, P. J., and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: Mediation by the S2 binding in rat cerebral cortex but not in subcortical regions.J. Pharmacol. Exp. Ther. 234195–203.

    Google Scholar 

  • Cox, B., Lee, T. F., and Martin, D. (1981). Different hypothalamic receptors mediate 5-HT and tryptamine-induced core temperature changes in the rat.Br. J. Pharmacol. 72477–482.

    Google Scholar 

  • Creese, I., and Sibley, D. R. (1981). Receptor adaptation to centrally acting drugs. InAnnu. Rev. Pharmacol. Toxicol. 21357–391.

    Google Scholar 

  • David, J.-C., and Coulon, J.-F. (1985). Octopamine in invertebrates and vertebrates.Prog. Neurobiol. 24141–185.

    Google Scholar 

  • Dudai, Y. (1982). High-affinity octopamine receptors revealed inDrosophilia by binding of [3H]octopamine.Neurosci. Lett. 28163–167.

    Google Scholar 

  • Dudai, Y., and Zvi, s. (1984). High-affinity [3H]octopamine binding sites inDrosophila melanogaster: Interaction with ligands and relationship to octopamine receptors.Comp. Biochem. physiol. 77C145–151.

    Google Scholar 

  • Durden, D. A., Philips, S. R., and Boulton, A. A. (1973). Identification and distribution ofβ-phenylethylamine in the rat.Can. J. Biochem. 51995–1002.

    Google Scholar 

  • Evans, P. D. (1981). Multiple receptor types for octopamine in the locust.J. Physiol. 31899–122.

    Google Scholar 

  • Graham, D., and Langer, S. Z. (1987). [3H]tryptamine binding sites of rat cerebral cortex: Pharmacological profile and plasticity.Neuropharmacology 261093–1097.

    Google Scholar 

  • Greenshaw, A. J., and Dewhurst, W. G. (1987). Tryptamine receptors: Fact, myth or misunderstanding?Brain Res. Bull. 18253–256.

    Google Scholar 

  • Hashemzadeh, H., Hollingworth, R. M., and Voliva, A. (1985). Receptors for [3H]octopamine in the adult firefly light organ.Life Sci. 37433–440.

    Google Scholar 

  • Hauger, R. L., Skolnick, P., and Paul, S. M. (1982). Specific [3H]β-phenylethylamine binding sites in rat brain.Eur. J. Pharmacol. 83147–148.

    Google Scholar 

  • Jones, R. S. J. (1982). Tryptamine: A neuromodulator or neurotransmitter in mammalian brain?Prog Neurobiol. 19117–139.

    Google Scholar 

  • Juorio, A. V. (1982). The effects of some antipsychotic drugs, d-amphetamine and reserpine on the concentration and rate of accumulation of tryptamine and 5-hydroxytryptamine in the mouse striatum.Can. J. Phys. Pharmacol. 60376–380.

    Google Scholar 

  • Juorio, A. V. (1988). Brain trace amines: Mapping studies and effects of mesencephalic lesions. InTrace Amines: Comparative and Clinical Neurobiology (A. A. Boulton, A. V. Juorio, and R. G. H. Downer, Eds.), Humana Press, Clifton, N.J., pp. 157–174.

    Google Scholar 

  • Juorio, A. V., and Durden, D. A. (1984). The distribution and turnover of tryptamine in the brain and spinal cord.Nuerochem. Res. 91283–1293.

    Google Scholar 

  • Juorio, A. V., Greenshaw, A. J., and Ngugen, T. V. (1987). Effect of intranigral administration of 6-hydroxydopamine and 5,7-dihydroxytryptamine on rat brain tryptamine.J. Neurochem. 481346–1350.

    Google Scholar 

  • Kaulen, P., Bruning, G., Rommelspacher, H., and Baumgarten, H.-G. (1986). Characterization and quantitative autoradiography of [3H]tryptamine binding sties in rat brain.Brain Res. 36672–88.

    Google Scholar 

  • Kellar, K. J., and Cascio, C. S. (1982). [3H]Tryptamine: High affinity binding sites in rat brain.Eur. J. Pharmacol. 78475–478.

    Google Scholar 

  • Kendall, D. A., and Nahorski, S. R. (1985). 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants.J. Pharmacol. Exp. Ther. 233473–479.

    Google Scholar 

  • Kienzl, E., Riederer, P., Jellinger, K., and Noller, H. (1985). A physicochemical approach to characterise [3H]tryptamine binding sites in human brain. InNeuropsychopharmacology of the Trace Amines (A. A. Boulton, P. R. Bieck, L. Maitre, and P. Riederer, Eds.), Humana Press, Clifton, N.J., pp. 469–485.

    Google Scholar 

  • Kopin, I. J. (1968). False adrenergic transmitters.Annu. Rev. Pharmacol. 8377–394.

    Google Scholar 

  • Laduron, P. M. (1984). Criteria for receptor sites in binding studies.Biochem. Pharmacol. 33833–839.

    Google Scholar 

  • Laduron, P. M. (1988). Stereospecificity in binding studies: A useful criterion though insufficient to prove the presence of receptors.Biochem. Pharmacol. 3737–40.

    Google Scholar 

  • Martin, L. L., Roland, D. M., Neale, R. F., and Wood, P. L. (1986). Structural relationships in the inhibition of [3H]tryptamine binding to rat brain membranesin vitro by phenylethylamines.Eur. J. Pharmacol. 13253–55.

    Google Scholar 

  • Martin, L. L., Neale, R. F., and Wood, P. L. (1987). Down-regulation of tryptamine receptors following chronic administration of clorgyline.Brain Res. 419239–243.

    Google Scholar 

  • McCormack, J. K., Beitz, A. J., and Larson, A. A. (1986). Autoradiographic localization of tryptamine binding sites in the rat and dog central nervous system.J. Neurorsci. 694–101.

    Google Scholar 

  • Nguyen, T. V., Paterson, I. A., Juorio, A. V., Greenshaw, A. J., and Boulton, A. A. (1989). Tryptamine receptors: Neurochemical and electrophysiological evidence for postsynaptic and functional binding sites.Brain Res. 47685–93.

    Google Scholar 

  • Osborne, N. N. (1985). Tryptamine, tyramine and histamine immunoreactivities in specific neurones of the gastropod CNS. InNeuropsychopharmacology of the Trace Amines, (A. A. Boulton, P. R. Bieck, L. Maitre, and P. Riederer, Eds.), Humana Press, Clifton, N.J., pp. 115–124.

    Google Scholar 

  • Osborne, N. N., Cutcliffe, N., and Peard, A. (1986). Trace amines (ethylamine, octopamine, and tryptamine) stimulate inositol phospholipid hydrolysis in rat cerebral cortex slices.Neurochem. Res. 111525–1531.

    Google Scholar 

  • Overstreet, D. H., and Yamamura, H. I. (1979). Receptor alterations and drug tolerance.Life Sci. 251865–1878.

    Google Scholar 

  • Perry, D. C. (1986). [3H]Tryptamine autoradiography in rat brain and choroid plexus reveals two distinct sites.J. Pharmacol. Exp. Ther. 236548–559.

    Google Scholar 

  • Perry, D. C. (1988). Comparison of the binding of [3H]tryptamine in rat brain with that of two ligands for monoamine oxidase, [3H]MPTP and [3H]pargyline. InTrace Amines: Their Comparative and Clinical Neurobiology, (A. A. Boulton, A. V. Juorio, and R. G. H. Downer, Eds.), Humana Press, Clifton, N. J., pp. 83–94.

    Google Scholar 

  • Perry, D. C., Manning, D. C., and Snyder, S. H. (1982).In vitro autoradiographic localization of [3H]tryptamine binding sites in rat brain.Neurosci. Abstr. 8783.

    Google Scholar 

  • Philips, S. R., and Boulton, A. A. (1979). The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum.J. Neurochem. 33159–167.

    Google Scholar 

  • Robertson, H. A., and Juorio, A. V. (1976). Octopamine and some related noncatecholic amines in invertebrate nervous systems. InInternational Review of Neurobiology, Vol. 19 (C. C. Pfeiffer and J. R. Smythies, Eds.), Academic Press, New York, pp. 173–224.

    Google Scholar 

  • Ungar, F., Mosnaim, A. D., Ungar, B., and Wolf, M. E. (1977). Tyramine-binding by synaptosomes from rat brain: Effect of centrally active drugs.Biol. Psychiat. 12661–668.

    Google Scholar 

  • Vaccari, A. (1986). High affinity binding of [3H]-tyramine in the central nervous system.Br. J. Pharmacol. 8915–25.

    Google Scholar 

  • Vaccari, A. (1988). High affinity binding ofp-tyramine: A process in search of a function. InTrace Amines: Comparative and Clinical Neurobiology (A. A. Boulton, A. V. Juorio, and R. G. H. Downer Eds.), Humana Press, Clifton, N.J., pp. 119–132.

    Google Scholar 

  • Wood, P. L., Pilapil, C., LaFaille, F., Nair, P. V., and Glennon, R. A. (1984). Unique [3H]tryptamine binding sites in rat brain: Distribution and pharmacology.Arch. Int. Pharmacodyn. 268194–201.

    Google Scholar 

  • Wu, P. H., and Boulton, A. A. (1973). Distribution and metabolism of tryptamine in the rat brain.Can. J. Biochem. 511104–1112.

    Google Scholar 

  • Wu, P. H., and Boulton, A. A. (1974). Distribution, metabolism and disappearance of intraventricularly injectedp-tyramine in the rat.Can. J. Biochem. 52374–381.

    Google Scholar 

  • Wu, P. H., and Boulton, A. A. (1975). Metabolism, distribution an disappearance ofβ-phenylethylamine in the rat.Can. J. Biochem. 5342–50.

    Google Scholar 

  • Xu, J., and Chuang, D.-M. (1987). Setonergic, adrenergic and histaminergic receptors coupled to phospholipase C in cultured cerebellar granule cells of rats.Biochem. Pharmacol. 362353–2358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.V., Juorio, A.V. Binding sites for brain trace amines. Cell Mol Neurobiol 9, 297–311 (1989). https://doi.org/10.1007/BF00711411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711411

Key words

Navigation