Skip to main content
Log in

Relationship between the temperature preferenda of fishes, amphibians and reptiles, and the substrate affinities of their trypsins

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The apparent Michaelis constants of crude trypsin preparations of three fishes with stomach, four Cyprinidae, five amphibians and three reptiles were determined at 15°C, 30°C and at the temperature preferendum of each species. The affinity of the sum of all trypsin isozymes of a given species for DL-BAPA was correlated with the temperature preferenda (Tp) of the species. The affinity of trypsins in vertebrates with a high Tp is, as a rule, lower than in species with a low Tp. However, the agastric cyprinids possess trypsins with a much higher affinity than those of other vertebrates. Within species the relationship between Km(app) and experimental temperature is different in different groups of vertebrates. In the terrestrial species there is a tendency for each species to have the lowest value of Km(app) in its preferred range of temperature. On the other hand, in fish, and in tadpoles ofRana temporaria, Km is independent of experimental temperature over a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrington, E. J. W.: Gastric digestion in the lower vertebrates. Biol. Rev. Cambr. Phil. Soc.17, 1–26 (1942)

    Google Scholar 

  • Béchet, J. J., Yon, J.: Mise en évidence d'un effet allostérique lors de l'hydrolyse du p-toluène sulfonyl-L-arginyl-methyl ester par la trypsine. Biochim. biophys. Acta (Amst.)89, 117–126 (1964)

    Google Scholar 

  • Bogert, C. M.: Relative abundance, habitats and normal thermal levels of some Virginia Salamanders. Ecology33, 16–30 (1952)

    Google Scholar 

  • Cunningham, L.: The structure and mechanism of action of proteolytic enzymes. Comprehens. Biochem.16, 85–188 (1965)

    Google Scholar 

  • Erlanger, B. F., Kolowsky, N., Cohen, W.: The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys.95, 271–278 (1961)

    Google Scholar 

  • Feder, M. E., Pough, H.: Temperature selection by the red-backed salamander,Plethodon c. cinereus (Caudata: Plethodontide). Comp. Biochem. Physiol.50A, 91–98 (1975)

    Google Scholar 

  • Ferguson, R. G.: The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada15, 607–624 (1958)

    Google Scholar 

  • Fry, F. E. J.: Effects of the environment on animal activity. Univ. Toronto stud. Biol. Ser. No. 55 (Pub. Ont. Fish. Res. Lab. No. 68, 62 pp.) (1947)

  • Garside, E. T., Tait, J. S.: Preferred temperature of rainbow trout (Salmo gairdneri R.) and its unusual relationship to acclimation temperature. Canad. J. Zool.36, 563–567 (1958)

    Google Scholar 

  • Hazel, J., Prosser, C. L.: Interpretation of inverse acclimation to temperature. Z. vergl. Physiol.67, 217–228 (1970)

    Google Scholar 

  • Herter, K.: Über Vorzugstemperaturen von Reptilien. Z. vergl. Physiol.28, 105–141 (1940)

    Google Scholar 

  • Hochachka, P. W.: Basic strategies and mechanisms of enzyme adaptation to temperature. In: Effects of temperature on ectothermic organisms (ed. W. Wieser), p. 69–81. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Hochachka, P. W., Somero, G. N.: Strategies of biochemical adaptation. Philadelphia: W. B. Saunders 1973

    Google Scholar 

  • Hofer, R.: Einfluß von Temperatur, Licht und Jahreszeit auf Verdauung und Atmung zweier Froscharten:Rana ridibunda (bzw.Rana esculenta) undRana temporaria. Diss. Phil. Fak., Univ. Innsbruck (1971)

  • Hofer, R.: Einfluß von Temperatur, Photoperiode und Jahreszeit auf Verdauung und Atmung zweier Froscharten:Rana ridibunda (bzw.Rana esculenta) undRana temporaria. Zool. Jb. Physiol.76, 507–530 (1972)

    Google Scholar 

  • Jany, K. D.: Isolierung und Charakterisierung von Serin-Endopeptidasen des magenlosen FischesCarassius auratus gibelio. Diss. Univ. Heidelberg (1972)

  • Katzenellenbogen, B. S., Kafatos, F. C.: Proteinases of silkmoth moulting fluid: physical and catalytical properties. J. Insect Physiol.17, 775–800 (1971)

    Google Scholar 

  • Kauri, H.: Die Rassenbildung bei europäischen Rana-Arten und die Gültigkeit der Klimaregeln. Ann. Soc. tartun. res. nat. investig. constit.2, pp. 172 (1959)

    Google Scholar 

  • Kleine, R.: Vorkommen und Eigenschaften der proteolytischen Enzyme des Magensaftes und der Mitteldarmdrüse des FlußkrebsesAstacus astacus undCambarus affinis—II. Endopeptidasen. Z. vergl. Physiol.55, 51–69 (1967)

    Google Scholar 

  • Kleine, R., Stangenberg, P.: Isolierung und Charakterisierung der beiden Trypsin-Isoenzyme des amerikanischen FlußkrebsesCambarus affinis. Hoppe-Seylers Z. physiol. Chem.355, 114–124 (1974)

    Google Scholar 

  • Knapp, W.: Die jahreszeitliche Steuerung der Atmung in Abhängigkeit von Akklimationstemperatur und Experimentaltemperature beiTriturus alpestris Laur. undSalamandra atra Laur. (Amphibia). Oecologia (Berl.)15, 353–374 (1974)

    Google Scholar 

  • Licht, P.: Effects of temperature on heart rates of lizards during rest and activity. Physiol. Zool.38, 129–137 (1965)

    Google Scholar 

  • Lutfi, M.: Das thermotaktische Verhalten einiger Reptilien. Diss. Berlin (1936)

  • News, H.: Über die Temperaturadaptation der Sekretion von Verdauungsfermenten und deren Hitzeresistenz. Z. vergl. Physiol.40, 356–362 (1957)

    Google Scholar 

  • Miller, J. W., Kramer, K. J., Law, J. H.: Isolation and partial characterization of the larval midgut trypsin from the tobacco hornworm,Manduca sexta (Lepidoptera: Sphingidae). Comp. Biochem. Physiol.48B, 117–129 (1974)

    Google Scholar 

  • Neurath, H., Schwert, G. W.: The mode of action of the crystalline pancreatic proteolytic enzymes. Chem. Revs.46, 69–153 (1950)

    Google Scholar 

  • Nilsson, A., Fänge, R.: Digestive proteases in the holocephalian fishChimaera monstrosa. Comp. Biochem. Physiol.31, 147–165 (1969)

    Google Scholar 

  • Norris, K. S.: The function of temperature in the ecology of the percoid fishGiralla nigricans. Ecol. Monogr.33, 23–62 (1963)

    Google Scholar 

  • Owen, T. G., Wiggs, A. J.: Thermal compensation in the stomach of the brook trout (Salvelinus fontinalis). Comp. Biochem. Physiol.40B, 465–473 (1971)

    Google Scholar 

  • Pfleiderer, G., Zwilling, R.: Über eine im physiologischen Bereich native Proteine hydrolysierende Endopeptidase aus dem Darm vonTenebrio molitor. Biochem. Z.344, 127–140 (1966)

    Google Scholar 

  • Pfleiderer, G., Zwilling, R., Sonneborn, H. H.: Eine Protease vom Molekulargewicht 11000 und eine trypsinähnliche Fraktion ausAstacus fluviatilis. Hoppe-Seylers Z. physiol. Chem.348, 1319–1331 (1967)

    Google Scholar 

  • Pfleiderer, G., Zwilling, R.: Die molekulare Evolution proteolytischer Enzyme. Naturwissenschaften59, 396–405 (1972)

    Google Scholar 

  • Pitt, T. K., Garside, E. T., Hepburn, R. L.: Temperature selection of the carp (Cyprinus carpio). Canad. J. Zool.34, 555–557 (1956)

    Google Scholar 

  • Precht, H., Christophersen, J., Hensel, H., Larcher, W.: Temperature and life. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Prosser, C. L.: Physiological adaptation. Washington: Amer. Phys. Soc. 1958

    Google Scholar 

  • Prosser, C. L.: Comparative animal physiology. Philadelphia-London-Toronto: W. B. Saunders 1973

    Google Scholar 

  • Reichling, H.: Transpiration und Vorzugstemperatur mitteleuropäischer Reptilien und Amphibien. Zool. Jahrb. Allg. Zool.67, 1–64 (1957)

    Google Scholar 

  • Rinderknecht, H., Geokas, M. C.: Anionic and cationic trypsinogens (trypsins) in mammalian pancreas. Enzyme14, 116–130 (1972/73)

    Google Scholar 

  • Rosenthal, G. M.: The role of moisture and temperature in the local distribution of the plethodontid salamanderAneides lugubris. Univ. Calif. Publ. Zool.54, 371–420 (1957)

    Google Scholar 

  • Rühmekorf, E.: Beiträge zur Ökologie mitteleuropäischer Salientia II. Temperaturwahl der Larven. Z. Morph. Ökolog. Tiere47, 20–36 (1958)

    Google Scholar 

  • Schlieper, C.: Genetic and nongenetic cellular resistance adaptation in marine invertebrates. Helgoländer wiss. Meeresunters.14, 482–502 (1966)

    Google Scholar 

  • Schoener, T. W.: Nonsynchronous spatial overlap of lizards in patchy habits. Ecology51, 408–418 (1970)

    Google Scholar 

  • Smit, H.: Influence of temperature on the rate of gastric juice secretion in the brown bullheadIctalurus nebulosus. Comp. Biochem. Physiol.21, 125–132 (1967)

    Google Scholar 

  • Strübing, H.: Über Vorzugstemperaturen von Amphibien. Z. Morph. Ökol. Tiere43, 357–386 (1954)

    Google Scholar 

  • Trautschold, I.: Habilitationsschrift, Med. Fak. Univ. München (1965)

  • Tuppy, H., Wiesbauer, U., Wintersberger, E.: Aminosäure-p-nitroanilide als Substrat für Aminopeptidasen und andere proteolytische Fermente. Hoppe-Seylers Z. physiol. Chem.329, 278–288 (1962)

    Google Scholar 

  • Varley, M. E.: British freshwater fishes. Fishing News (Books) London (1967)

    Google Scholar 

  • Zahn, M.: Die Vorzugstemperaturen zweier Cypriniden und eines Cyprinodonten und die Adaptationstypen der Vorzugstemperaturen bei Fischen. Zool. Beitr., N. S.7, 13–25 (1962)

    Google Scholar 

  • Zahn, M.: Jahreszeitliche Veränderungen der Vorzugstemperaturen von Scholle und Bitterling. Zool. Anz., Suppl.27, 562–580 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, R., Ladurner, H., Gattringer, A. et al. Relationship between the temperature preferenda of fishes, amphibians and reptiles, and the substrate affinities of their trypsins. J Comp Physiol B 99, 345–355 (1975). https://doi.org/10.1007/BF00710375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00710375

Keywords

Navigation