Skip to main content
Log in

Photochemistry of organic molecules within zeolites: Role of cations

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

In this article, we illustrate how one can utilize the cation embedded in a zeolite matrix to control the photophysical and photochemical behavior of guest molecules included in zeolite cages/cavities. Three aspects of cation-guest interaction are highlighted. Strong electronic interaction between the cation and the guest leads to mobilization of guests within zeolite supercages, alteration of the lowest electronic configuration (nл*, лл*) and restriction of conformation of molecules. Less obvious to a non-photochemist is the ability of cations, depending on their atomic weight, to induce spin conversion (singlet-triplet) in molecules. Photophysical studies carried out with aromatics and photodimerization of acenaphthylene highlight this point. The power of the heavy-atom cation effect in zeolites has been demonstrated by recording phosphorescence from several olefins whose phosphorescence has not previously been recorded. Cations by their sheer size can influence the mobility of molecules within zeolites. Restriction of motion of reactive intermediates results in product selectivity in reactions as illustrated with a few examples. Properties of cations and consequently their influence can change depending on whether they are hydrated or uncoordinated to water. Aggregation of dyes and aromatics and reactivities of carbonyl compounds are influenced by water present within zeolites. We have shown in this article that zeolites can be used as unique reaction vessels for photochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kalyanasundaram,Photochemistry in Microheterogeneous Systems, Academic Press, New York (1987);

    Google Scholar 

  2. T. Matsuura and M. Anpo (Eds),Photochemistry on Solid Surfaces, Elsevier, Amsterdam (1989);

    Google Scholar 

  3. V. Ramamurthy (Ed),Photochemistry in Organized and Constrained Media, VCH, New York (1991);

    Google Scholar 

  4. H.-J. Schneider, and H. Durr (Eds),Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH, Weinheim (1991);

    Google Scholar 

  5. V. Balzani and F. Scandola,Supramolecular Photochemistry, Ellis Horwood, Chichester, England (1991).

    Google Scholar 

  6. V. Ramamurthy, R. G. Weiss, and G. S. Hammond,Adv. Photochem.,18, 67 (1993).

    Google Scholar 

  7. N. J. Turro and P. Wan,Tetrahedron Letters,25, 3655 (1984);

    Google Scholar 

  8. H. L. Casal and J. C. Scaiano,Can. J. Chem.,62, 628 (1984);

    Google Scholar 

  9. S. L. Suib and A. Kostapapas,J. Am. Chem. Soc.,106, 7705 (1984).

    Google Scholar 

  10. For a summary see: N. J. Turro,Pure & Appl. Chem.,58, 1219 (1986);

    Google Scholar 

  11. N. J. Turro, inMolecular Dynamics in Restricted Geometries, J. Klafter and J. M. Drake (Eds), John Wiley, New York, p 387 (1989);

    Google Scholar 

  12. V. Ramamurthy, inPhotochemistry in Organized and Constrained Media, V. Ramamurthy (Ed), VCH, New York, p 429 (1991);

    Google Scholar 

  13. N. J. Turro and M. Garcia-Garibay, inPhotochemistry in Organized and Constrained Media, V. Ramamurthy (Ed), VCH, New York, p 1 (1991);

    Google Scholar 

  14. V. Ramamurthy, D. F. Eaton, and J. V. Caspar,Acc. Chem. Res.,25, 299 (1992);

    Google Scholar 

  15. V. Ramamurthy,Chimia,46, 359 (1992);

    Google Scholar 

  16. P. Kamat,Chem. Rev.,93, 267 (1993);

    Google Scholar 

  17. J. K. Thomas,Chem. Rev.,93, 301 (1993);

    Google Scholar 

  18. K. B. Yoon,Chem. Rev.,93, 321 (1993);

    Google Scholar 

  19. V. Ramamurthy and D. F. Eaton,Chem. Materials,6, 1128 (1994).

    Google Scholar 

  20. D. W. Breck,Zeolite Molecular Sieves: Structure, Chemistry, and Use, John Wiley and Sons, New York (1974);

    Google Scholar 

  21. A. Dyer,An Introduction to Zeolite Molecular Sieves, John Wiley and Sons, Bath (1988);

    Google Scholar 

  22. H. van Bekkum, E. M. Flanigen and J. C. Jansen (Eds),Introduction to Zeolite Science and Practice, Elsevier, Amsterdam (1991);

    Google Scholar 

  23. R. Szostak,Molecular Sieves. Principles of Synthesis and Identification, Van Nostrand, New York (1989).

    Google Scholar 

  24. D. W. Breck,Zeolite Molecular Sieves: Structure, Chemistry, and Use, John Wiley and Sons, New York, pp 529–592 (1974).

    Google Scholar 

  25. W. M. Meier and D. H. Olson, inAtlas of Zeolite Structure Types, Butterworths, Cambridge (Second Revised Edition), pp 96–97 (1987);

    Google Scholar 

  26. R. Szostak,Handbook of Molecular Sieves, Van Nostrand Reinhold, New York, pp 183–188 (1992).

    Google Scholar 

  27. Calculations of polyhedral volumes were performed using a modification of the POLYVOL Program [D. Swanson and R. C. Peterson,The Canadian Mineralogist,18, 153 (1980); D. K. Swanson and R. C. Peterson, “POLYVOL Program Documentation”, Virginia Polytechnic Institute, Blacksburg, VA] assuming the radius of the TO2 unit to be 2.08Å (equivalent to that of quartz).

    Google Scholar 

  28. R. G. Weiss, V. Ramamurthy, and G. S. Hammond,Acc. Chem. Res.,26, 530 (1993).

    Google Scholar 

  29. M. Hepp, V. Ramamurthy, D. R. Corbin, and C. Dybowski,J. Phys. Chem.,96, 2629 (1992).

    Google Scholar 

  30. V. Ramamurthy,Mol. Cryst. Liq. Cryst.,240, 53 (1994).

    Google Scholar 

  31. V. Ramamurthy, D. R. Sanderson, and D. F. Eaton,J. Phys. Chem.,97, 13380 (1993).

    Google Scholar 

  32. V. Ramamurthy and J. V. Caspar,Mol, Cryst. Liq. Cryst.,211, 211 (1992).

    Google Scholar 

  33. Y. S. Liu, P. de Mayo, and W. R. Ware,J. Phys. Chem.,97, 5987, 5995 (1993).

    Google Scholar 

  34. V. Ramamurthy, D. R. Corbin, and L. J. Johnston,J. Am. Chem. Soc.,114, 3870 (1992).

    Google Scholar 

  35. E. J. Baum, J. K. S. Wan, and J. N. Pitts,J. Am. Chem. Soc.,88, 2652 (1966);

    Google Scholar 

  36. D. R. Kearns and W. Case,J. Am. Chem. Soc.,88, 5087 (1966);

    Google Scholar 

  37. A. A. Lamola,J. Chem. Phys.,47, 4810 (1967);

    Google Scholar 

  38. P. J. Wagner, A. E. Kemppainen, and H. Schott,J. Am. Chem. Soc.,95, 5604 (1973).

    Google Scholar 

  39. V. Ramamurthy, D. R. Sanderson, and D. F. Eaton,Photochem. Photobiol.,56, 297 (1992).

    Google Scholar 

  40. V. Ramamurthy and D. F. Eaton, inProceedings of the 9th International Zeolite Conference, R. von Ballmoos, J. B. Higgins and M. M. J. Treacy (Eds), Butterworth-Heinemann, Boston, p 587 (1992).

    Google Scholar 

  41. V. Ramamurthy, D. R. Corbin, N. J. Turro, and Y. Sato,Tetrahedron Lett.,30, 5829 (1989);

    Google Scholar 

  42. V. Ramamurthy, X. G. Lei, N. J. Turro, T. R. Lewis, and J. R. Scheffer,Tetrahedron Lett.,32, 7675 (1991).

    Google Scholar 

  43. D. R. Corbin, D. F. Eaton, and V. Ramamurthy,J. Am. Chem. Soc.,110, 4848 (1988).

    Google Scholar 

  44. Y. Wada, Y. Yoshizawa, and A. Morikawa,J. Chem. Soc., Chem. Commun., 319 (1990).

  45. V. Ramamurthy, J. V. Caspar, E. W. Kuo, D. R. Corbin, and D. F. Eaton,J. Am. Chem. Soc.,114, 3882 (1992).

    Google Scholar 

  46. J. V. Caspar, V. Ramamurthy, and D. R. Corbin,Coordination Chem. Rev.,97, 225 (1990).

    Google Scholar 

  47. V. Ramamurthy, J. V. Caspar, D. R. Corbin, and D. F. Eaton,J. Photochem. Photobiol. A: Chemistry,50, 157 (1989).

    Google Scholar 

  48. M. Kasha,J. Chem. Phys.,20, 71 (1952);

    Google Scholar 

  49. D. S. McClure,J. Chem. Phys.,17, 905 (1949).

    Google Scholar 

  50. J. M. Larson and L. R. Sousa,J. Am. Chem. Soc.,100, 1942 (1978);

    Google Scholar 

  51. S. Ghosh, M. Petrin, A. H. Maki, and L. R. Sousa,J. Chem. Phys.,87, 4315 (1987);

    Google Scholar 

  52. S. Ghosh, M. Petrin, A. H. Maki, and L. R. Sousa,J. Chem. Phys.,88, 2913 (1988).

    Google Scholar 

  53. V. Ramamurthy, J. V. Caspar, D. R. Corbin, B. D. Schlyer, and A. H. Maki,J. Phys. Chem.,94, 3391 (1990).

    Google Scholar 

  54. G. Weinzierl and J. Friedrich,Chem. Phys. Lett.,80, 55 (1981).

    Google Scholar 

  55. V. Ramamurthy, J. V. Caspar, E. W. Kuo, D. R. Corbin, and D. F. Eaton,J. Am. Chem. Soc.,114, 3882 (1992);

    Google Scholar 

  56. V. Ramamurthy, J. V. Caspar, and D. R. Corbin,Tetrahedron Letters,31, 1097 (1990).

    Google Scholar 

  57. J. Saltiel, G. E. Khalil, and K. Schanze,Chem. Phys. Lett.,70, 233 (1980);

    Google Scholar 

  58. D. F. Evans,J. Chem. Soc., 1351 (1957);

  59. R. H. Dyck and D. S. McClure,J. Chem. Phys.,36, 2326 (1962);

    Google Scholar 

  60. H. Gorner,J. Phys. Chem.,93, 1826 (1989).

    Google Scholar 

  61. T. N. Ni, R. A. Caldwell, and L. A. Melton,J. Am. Chem. Soc.,111, 457 (1989);

    Google Scholar 

  62. P. M. Crosby, J. M. Dyke, J. Metcalfe, A. J. Rest, K. Salisbury, and J. R. Sodeau,J. Chem. Soc., Perkin II, 182 (1977).

    Google Scholar 

  63. G. Heinrich, G. Holzer, H. Blume, and D. Schulte-Frohlinde,Z. Naturforsch.,25b, 496 (1970);

    Google Scholar 

  64. D. F. Evans and J. N. Tucker,J. Chem. Soc., Faraday Trans. II,68, 174 (1972).

    Google Scholar 

  65. V. Ramamurthy and D. R. Sanderson, unpublished results.

  66. D. O. Cowan and R. L. Drisko,Elements of Organic Photochemistry, Plenum, New York, p 435 (1976).

    Google Scholar 

  67. V. Ramamurthy, D. R. Corbin, C. V. Kumar, and N. J. Turro,Tetrahedron Lett.,31, 47 (1990).

    Google Scholar 

  68. B. Borecka, A. D. Gudmundsttir, G. Olovsson, V. Ramamurthy, J. R. Scheffer, and J. Trotter,J. Am. Chem. Soc.,116, 10322 (1994).

    Google Scholar 

  69. D. Barthomeuf,J. Phys. Chem.,88, 42 (1984).

    Google Scholar 

  70. For a review: A. M. Eremenko,Adsorbtsiya Adsorbenty,8, 48 (1980).

    Google Scholar 

  71. S. Okamoto, H. Nishiguchi, and M. Anpo,Chem. Lett., 1009 (1992).

  72. A. Corma, H. Garcia, S. Iborra, V. Marti, M. A. Miranda, and J. Primo,J. Am. Chem. Soc.,115, 2177 (1993).

    Google Scholar 

  73. F. L. Cozens, H. Garcia, and J. C. Scaiano,J. Am. Chem. Soc.,115, 11134 (1993).

    Google Scholar 

  74. N. J. Turro,Proc. Natl. Acad. Sci.,80, 609 (1983);

    Google Scholar 

  75. G. F. Lehr and N. J. Turro,Tetrahedron,37, 3411 (1981);

    Google Scholar 

  76. N. J. Turro and B. Kraeutler,Acc. Chem. Res.,13, 369 (1980).

    Google Scholar 

  77. P. S. Engel,J. Am. Chem. Soc.,92, 6074 (1970);

    Google Scholar 

  78. W. K. Robins and R. H. Eastman,J. Am. Chem. Soc.,92, 6076 (1970).

    Google Scholar 

  79. N. J. Turro and G. C. Weed,J. Am. Chem. Soc.,105, 1861 (1983).

    Google Scholar 

  80. Z. Zhang, Ph.D Thesis, Columbia University (1989)

  81. N. J. Turro and Z. Zhang,Tetrahedron Letters,30, 3761 (1989).

    Google Scholar 

  82. V. Ramamurthy, D. R. Corbin, and D. F. Eaton,J. Org. Chem. 55, 5269 (1990).

    Google Scholar 

  83. D. R. Corbin, D. F. Eaton, and V. Ramamurthy,J. Org. Chem.,53, 5384 (1988);

    Google Scholar 

  84. V. Ramamurthy, D. R. Corbin, D. F. Eaton, and N. J. Turro,Tetrahedron Lett.,30, 5833 (1989).

    Google Scholar 

  85. K. Pitchumani and V. Ramamurthy, unpublished results.

  86. V. Ramamurthy and D. R. Sanderson,J. Phys. Chem.,97, 13380 (1993).

    Google Scholar 

  87. V. Ramamurthy,Mol. Cryst. Liq. Cryst.,240, 53 (1994).

    Google Scholar 

  88. V. Ramamurthy, D. R. Sanderson, and D. F. Eaton,J. Am. Chem. Soc.,115, 10438 (1993).

    Google Scholar 

  89. Z. Zhang and N. J. Turro, unpublished results.

  90. V. Ramamurthy and D. R. Sanderson, unpublished results.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamurthy, V., Turro, N.J. Photochemistry of organic molecules within zeolites: Role of cations. J Incl Phenom Macrocycl Chem 21, 239–282 (1995). https://doi.org/10.1007/BF00709418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709418

Keywords

Navigation