Boundary-Layer Meteorology

, Volume 73, Issue 1–2, pp 125–143 | Cite as

Modelling the mean and turbulent structure of the summertime Arctic cloudy boundary layer

  • Kathleen L. Mcinnes
  • Judith A. Curry
Article

Abstract

This paper addresses the problem of modelling the summertime Arctic cloudy boundary layer. Specifically we consider the problem of multi-layered clouds in the boundary layer that includes the decoupling of the turbulence between upper and lower clouds. A high-resolution one-dimensional model with second-order turbulence closure and spectral radiative transfer is used to simulate a case study that was obtained during the 1980 Arctic Stratus Experiment. The effects of radiation, large-scale vertical motion and drizzle are investigated in sensitivity studies. Results of this study show that radiative transfer is important to the maintenance of the multiple cloud layers, and suggest that weak rising vertical motion is the most favorable situation to maintain two separate cloud layers.

Keywords

Radiation Boundary Layer Vertical Motion Radiative Transfer Sensitivity Study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ARCSS: 1993, ‘SHEBA: A Research Program on the Surface Heat Budget of the Arctic Ocean’, Report No. 3, 34 pp.Google Scholar
  2. Barker, E. H.: 1977, ‘A Maritime Boundary-Layer Model for the Prediction of Fog’,Boundary-Layer Meteorol. 11, 267–294.Google Scholar
  3. Brost, R. A., Wyngaard, J. C., Lenschow, D. H.: 1982, ‘Marine Stratocumulus Layers. Part II: Turbulence Budgets’,J. Atmos. Sci. 39, 818–836.Google Scholar
  4. Burk, S. D. and Thompson, W. T.: 1989, ‘A Vertically Nested Regional Numerical Weather Prediction Model with Second-Order Closure Physics’,Mon. Weath. Rev. 117, 2305–2323.Google Scholar
  5. Caughey, S. J., Crease, B. A., and Roach, W. T.: 1982, ‘A Field Study of Nocturnal Stratocumulus. I: Turbulence Structure and Entrainment’,Q. J. R. Meteorol. Soc. 108, 125–144.Google Scholar
  6. Curry, J. A.: 1986, ‘Interactions Among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds’,J. Atmos. Sci. 43, 90–106.Google Scholar
  7. Curry, J. A.: 1987, ‘The Contribution of Radiative Cooling to the Formation of Cold-Core Anticyclones’,J. Atmos. Sci. 44, 2575–2592.Google Scholar
  8. Curry, J. A. and Ebert, E. E.: 1990, ‘Sensitivity of the Thickness of Arctic Sea Ice to the Optical Properties of Clouds’,Ann. Glac. 14, 43–46.Google Scholar
  9. Curry, J. A. and Ebert, E. E.: 1992, ‘Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties’,J. Clin. 11, 1267–1280.Google Scholar
  10. Curry, J. A., Ebert, E. E., and Herman, G. F.: 1988, ‘Mean and Turbulence Strnucture of the Summertime Arctic Cloudy Boundary Layer’,Quart. J. Roy. Meteool. Soc. 114, 715–746.Google Scholar
  11. Curry, J. A. and Herman, G. F.: 1985, ‘Intrared Radiative Properties of Summertime Arctic Stratus Clouds’,J. Cli. App. Meteorol. 24, 525–538.Google Scholar
  12. Curry, J. A., Schramm, J. L., and Ebert, E. E.: 1993: Impact of Clouds on the Surface Radiation Balance of the Arctic Ocean’,Meteorol. Atmos. Phys. 51, 197–217.Google Scholar
  13. Curry, J. A., Schramm, J. L., and Ebert, E. E.: 1994, ‘Cloud-Radiation Feedback Processes in the Arctic’,J. Climate., submitted.Google Scholar
  14. Finger, J. E. and Wendling, P.: 1990, ‘Turbulence Structure of Arctic Stratus Clouds Derived from Measurements and Calculations’,J. Atmos. Sci. 47, 1351–1373.Google Scholar
  15. Forkel, R. and Wendling, P.: 1986, ‘A Numerical Study of the Formation of Arctic Stratus Clouds with Consideration of Absorbing Aerosol Particles’,Meteorol. Rdsch. 39, 74–79.Google Scholar
  16. Herman, G. and Curry, J. A.: 1984, ‘Observational and Theoretical Studies of Solar Radiation in Arctic Stratus Clouds’,J. Climate Appl. Meteorol. 23, 5–24.Google Scholar
  17. Herman, G. and Goody, R.: 1976, ‘Formation and Persistence of Summertime Arctic Stratus Clouds’,J. Atmos. Sci. 33, 1537–1553.Google Scholar
  18. Manabe, S., Stoffer, R. J., Spelman, M. J., and Bryan, K.: 1991, ‘Transient Response of a Coupled Ocean-Atmosphere Model of Sea Ice’,J. Geophys. Res. 76, 1550–1575.Google Scholar
  19. Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’,J. Atmos. Sci. 31, 1791–1806.Google Scholar
  20. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’,Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  21. Morcrette, J.-J.: 1991, ‘Radiation and Cloud Radiative Properties in the European Centre for Medium Range Weather Forecasts Forecasting System’,J. Geophys. Res. 96, 9121–9132.Google Scholar
  22. Nicholls, S.: 1984, ‘The Dynamics of Stratocumulus: Aircraft Observations and Comparisons with a Mixed Layer Model’,Q. J. R. Meteorol. Soc. 110, 783–820.Google Scholar
  23. Randall, D. A., Abeles, J. A., and Corsetti, T. G.: 1985, ‘Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model’,J. Atmos. Sci. 42, 641–676.Google Scholar
  24. Royer, J. R., Planton, S., and Deque, M.: 1990, ‘A Sensitivity Experiment for the Removal of Arctic Sea Ice with the French Spectral General Circulation Model’,Clim. Dyn 5, 1–17.Google Scholar
  25. Sommeria, G. and Deardorff, J. W.: 1977, ‘Subgrid-Scale Condensation in Models of Nonprecipitating Clouds’,J. Atmos. Sci. 34, 344–355.Google Scholar
  26. Tsay, S.-C. and Jayaweera, K.: 1984, ‘Physical Characteristics of Arctic Stratus Clouds’,J. Climate Appl. Meteorol. 23, 584–596.Google Scholar
  27. Yamada, T. and Mellor, G.: 1979, ‘A Numerical Simulation of BOMEX using a Turbulence Closure Model Coupled with Ensemble Cloud Relations’,Quart. J. Roy. Meteorol. Soc. 105, 915–944.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Kathleen L. Mcinnes
    • 1
  • Judith A. Curry
    • 2
  1. 1.Division of Athmospheric ResearchCSIROMordiallocAustralia
  2. 2.Program in Atmospheric and Oceanic Sciences, Dept. of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations