Skip to main content
Log in

Influence of composition and heat treatment on carbide phases in Ni−Mo alloys

  • Stainless Steels
  • Published:
Metal Science and Heat Treatment Aims and scope

Conclusions

  1. 1.

    Type, composition, and amount of carbide phases formed in Ni−Mo alloys depends, not only on the molybdenum and carbon contents, but also on the presence of other elements (V, Fe), impurities (C, Si), and reducing agents, and also on heat treatment.

  2. 2.

    In the alloy containing 26–31% Mo, 0.01–0.03% C, (0.1% Si, 0.2% Fe) the main carbide phase is an M12C-type carbide with lattice parametera=1.083–1.089 nm, containing not only Mo and Ni but also V and Ti (substituting for Mo in the lattice) and Fe and Si (substituting for Ni). In the 600–800°C temperature range, fully dispersed carbides precipitate along grain boundaries.

  3. 3.

    Silicon initiates precipitation of the silicon-containing carbide phases, including their precipitation along grain boundaries at 800°C. Silicon also acts as a stabilizer for the carbide of M12C type, with lattice parametera=1.094–1.098 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. T. V. Svistunova, “Corrosion-resistant nickel alloys,” Metalloved. Term. Obrab. Met., No. 7, 24–29 (1980).

    Google Scholar 

  2. G. Flint, J. Inst. Met.87, No. 9, 303–310 (1959).

    Google Scholar 

  3. T. V. Svistunova, Z. K. Runova, and A. A. Sakharov, “Corrosion of Ni−Al alloys,” Metalloved. Term. Obrab. Met., No. 5, 2–6 (1970).

    Google Scholar 

  4. T. V. Svistunova, V. I. Kirienko, L. P. Potapov, et al., “Influence of V and Nb on corrosion behavior of alloy N70M27 through ordering of its structure,” Metalloved. Term. Obrab. Met., No. 2, 33–39 (1973).

    Google Scholar 

  5. A. Fracker and H. Stadelamair, Trans. Met. Soc. AIME,245, No. 4, 847–850 (1969).

    Google Scholar 

  6. C. Heijrvegen and G. Rieck, Met. Trans.,4, No. 9, 2159–2162 (1973).

    Google Scholar 

  7. G. Lai, Met. Trans.,9A, No. 6, 827–833 (1978).

    Google Scholar 

  8. H. Beatte and F. Snyder, Trans. Am. Soc. Met.,49, No. 7, 883–886 (1957).

    Google Scholar 

  9. E. S. Makarov, “On one interesting chemical characteristic of conglomerates of structurally equivalent atomic positions in crystals,” in: Ideas of E. S. Fedorov in Modern Crystallography and Mineralogy [in Russian], Nauka, Leningrad (1970), p. 244.

    Google Scholar 

  10. E. S. Makarov, Isomorphism of Atoms in Crystals [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  11. R. Ruo, Acta Metal.,1, No. 5, 301–304 (1953).

    Google Scholar 

  12. A. Bagshaw, Kristallografia,144, No. 1-2, 53–63 (1976).

    Google Scholar 

  13. E. N. Kislyakova, “Identifcation of structure and composition of double carbides, W-Co-C system using straight Debyegram lines method,” Zh. Fiz. Khim.,17, No. 2, 108–114 (1943).

    Google Scholar 

  14. A. Taylor and K. Sachs, Nature,169, No. 3, 411 (1952).

    Google Scholar 

  15. B. Piercey and R. Smashey, Trans. AIME,239, No. 4, 451–457 (1967).

    Google Scholar 

  16. M. Godden and J. Beech, J. Iron Steel Inst.,208, No. 2, 168–171 (1970).

    Google Scholar 

  17. J. Leitnaker, G. Rotter, D. Bradley, J. Franklin, Met. Trans.,9A, No. 3, 397–400 (1978).

    Google Scholar 

  18. E. Parthe and V. Sadagopan, Acta Cryst.,16, No. 3, 202–205 (1963).

    Google Scholar 

  19. M. Eddine, E. Bertaut, and J. Paris, Acta Cryst.,33, No. 10, 3010–3013 (1977).

    Google Scholar 

  20. E. I. Gladishevskii and L. Ya. Borusevich, “Ternary system Cr−Ni−Si,” J. Nonorganic Chem.,8, No. 8, 1915–1920 (1963).

    Google Scholar 

  21. T. Mukherjee and D. Dyson, J. Iron Stee. Inst.,210, No. 3, 203–205 (1972).

    Google Scholar 

  22. M. A. Krishtal, Diffusion Processes in Iron Solutions [in Russian], Metallurgizdat, Moscow (1963).

    Google Scholar 

  23. O. A. Bannikh, “On mechanism of silicon influence on carbide precipitation,” Fiz.-Khim. Mekh. Mater.,27, No. 5, 837–841 (1969).

    Google Scholar 

Download references

Authors

Additional information

P. P. Bardin Central Research Institute of Ferrous Metals. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 21–25, February, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svistunova, T.V., Tsvigunov, A.N., Stegnukhina, L.V. et al. Influence of composition and heat treatment on carbide phases in Ni−Mo alloys. Met Sci Heat Treat 26, 119–124 (1984). https://doi.org/10.1007/BF00707159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00707159

Keywords

Navigation