Skip to main content
Log in

Vapour pressure of 4-methylpyridine (MePy) over [Ni(MePy)4(NCS)2y(MePy) and [Cu(MePy)4(NCS)2]·2/3(MePy) clathrates during their dissociation

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

Strain measurement and quasiequilibrium thermogravimetry were used to study the dissociation processes of two clathrates, [Ni(MePy)4(NCS)2]·(MePy) and [Cu(MePy)4(NCS)2]·2/3(MePy), accompanied by the liberation of MePy into the gaseous phase. In the Ni clathrate dissociation process in the temperature range 298–368 K the liberated MePy was redistributed between the solid clathrate and gaseous phases; the MePy vapour pressure over the clathrate is a function of temperature and the guest contenty, which agrees with the presence in the MePy-[Ni(MePy)4(NCS)2] system of a wide range of β-clathrate solutions, [Ni(MePy)4(NCS)2y(MePy). The same methods used to study the Cu clathrate dissociation resulted in conclusions different from those obtained for the dissociation process of the above clathrate: the process is described by the equation [Cu(MePy)4(NCS)2]·2/3(MePy)solid =[Cu(MePy)2(NCS)2]solid+22/3(MePy)gas; the temperature dependence of the Mepy vapour pressure over the solid sample does not depend on its composition, which points to the absence from the system of solid solutions based on the clathrate. Standard changes of the enthalpy, entropy, and isobaric-isothermal reaction potential for the temperature range 292–325 K are equal to 178.6±1.7 kJ (mole of clathrate)−1, 463±5.6 J (mole of clathrate)−1 K−1, and 40.4±2.4 kJ (mole of clathrate)−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kemula, J. Lipkowski, and D. Sybilska:Rocz. Chem. 48, 3 (1974).

    Google Scholar 

  2. S. Brzozowski and M. Broniarek:Rocz. Chem. 48, 1213 (1974).

    Google Scholar 

  3. J. Chajn, J. Lipkowski, and W. Zielenkiewicz:Rocz. Chem. 51, 1431 (1977).

    Google Scholar 

  4. J. Lipkowski and J. Chajn:Rocz. Chem. 51, 1443 (1977).

    Google Scholar 

  5. G.V. Gavrilova, N.V. Kislykh and V.A. Logvinenko:J. Therm. Anal. 33, 229 (1988).

    Google Scholar 

  6. N.V. Kislykh, Yu.A. Dyadin, N.V. Pervukhina, I.V. Davydova, and N.V. Podberezskaya:Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 3, 76 (1989);Chem. Abstr. 111, 141646n (1989).

    Google Scholar 

  7. J. Lipkowski and S. Majchrzak:Rocz. Chem. 49, 1655 (1975).

    Google Scholar 

  8. N.V. Pervukhina, N.V. Podberezskaya, I.V. Davydova, N.V. Kislykh, and Yu.A. Dyadin:J. Incl. Phenom. 13, 9 (1992).

    Google Scholar 

  9. J. Lipkowski, Yu.A. Dyadin, and N.V. Kislykh: manuscript.

  10. G.D. Andreetti, G. Bocelli, and P. Sgarabotto:Cryst. Struct. Commun. 1, 51 (1972).

    Google Scholar 

  11. S.A. Allison and R.M. Barrer:J. Chem. Soc. A 1717 (1969).

  12. Yu.A. Dyadin and N.V. Kislykh:Mendeleev Commun. 134 (1991).

  13. M.R. Caira, L.R. Nassimbeni, N. Winder, E. Weber, and A. Wierig:Supramol. Chem. 4, 135 (1994).

    Google Scholar 

  14. L.J. Barbour, K. Achleitner, and J.R. Greene:Thermochim. Acta 205, 171, 1992.

    Google Scholar 

  15. W.D. Schaeffer, W.S. Dorsey, D.A. Skinner, and C.G. Christian:J. Am. Chem. Soc. 79, 5870 (1957).

    Google Scholar 

  16. C.G. Jackson:J. Chem. Soc. 99, 1066 (1911).

    Google Scholar 

  17. A.V. Suvorov:Termodinamicheskaya khimiya paroobraznogo sostoyaniya. Tenzimetricheskiye issledovaniya geterogennykh ravnovesij, pp. 46–51. Khimiya, Leningrad (1970) (in Russian).

    Google Scholar 

  18. F. Paulik and J. Paulik:J. Therm. Anal. 5, 253 (1973).

    Google Scholar 

  19. Yu.A. Dyadin, G.N. Chekhova, and N.P. Sokolova:J. Incl. Phenom. 5, 187 (1987).

    Google Scholar 

  20. The thermal effect corresponding to this fracture was not observed in the course of the study of the system phase diagram which might be due to its being small, or some other reasons.

  21. E.F.H. Herington and I.F. Martin:Trans. Faraday. Soc. 49, 154 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ukraintseva, E.A., Dyadin, Y.A., Kislykh, N.V. et al. Vapour pressure of 4-methylpyridine (MePy) over [Ni(MePy)4(NCS)2y(MePy) and [Cu(MePy)4(NCS)2]·2/3(MePy) clathrates during their dissociation. J Incl Phenom Macrocycl Chem 23, 23–33 (1995). https://doi.org/10.1007/BF00706946

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00706946

Key words

Navigation