Skip to main content
Log in

Dynamics of Thermal Decomposition of the Double Complex Salt [Cr(ur)6][Co(CN)6]⋅4Н2О

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Information on the thermal decomposition of the double complex salt (DCS) [Cr(ur)6][Co(CN)6]⋅4Н2О (ur is urea CO(NH2)2) in the temperature range of 30–1000°C has been presented. The thermolysis of the studied DCS has been carried out in an argon atmosphere at three heating rates (5, 10, 20°C/min). The obtained TG data have been processed using the ARKS TA, and then the kinetics has been evaluated by the ARKS FK program from data for 5 and 10°C/min. The proposed multi-stage formal kinetic model provided a good fit of experimental data and showed a very reasonable prediction of decomposition at a rate of 20°C/min. It was demonstrated the formation of cyanobridge structures during thermolysis. A metastable compound Co3Cr was found in the product of thermolysis at 550°C. The mixture of the final products of calcination has been comprised Co0 (α-face-centered cubic lattice (fcc), β-fcc), Cr2O3, Cr7C3, Cr23C6, Cr21.26Co1.74C6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Bala, D. Sachdeva, M. Kumar, et al., J. Coord. Chem. 73, 2801 (2020). https://doi.org/10.1080/00958972.2020.1836363

    Article  CAS  Google Scholar 

  2. R. Bala, M. Kashyap, A. Kaur, et al., J. Mol. Struct. 1031, 246 (2013). https://doi.org/10.1016/j.molstruc.2012.09.080

    Article  CAS  Google Scholar 

  3. R. Bala, M. Kashyap, A. Kaur, et al., Inorg. Chem. Commun. 29, 56 (2013). https://doi.org/10.1016/j.inoche.2012.12.001

    Article  CAS  Google Scholar 

  4. D. Moon, S. Tanaka, T. Akitsu, et al., Acta Crystallogr., Sect. E Crystallogr. Commun. 71, 1336 (2015). https://doi.org/10.1107/S2056989015019258

    Article  CAS  Google Scholar 

  5. E. S. Bazhina, M. A. Shmelev, A. A. Korlyukov, et al., Russ. J. Coord. Chem. 47, 105 (2021). https://doi.org/10.1134/S1070328421020019

    Article  CAS  Google Scholar 

  6. E. S. Bazhina, M. A. Shmelev, M. A. Kiskin, et al., Russ. J. Coord. Chem. 47, 186 (2021). https://doi.org/10.1134/S1070328421030015

    Article  CAS  Google Scholar 

  7. S. Pechenyuk, A. Zolotarev, Yu. Semushina, et al., Z. Krist. – Cryst. Mater. 233, 35 (2018). https://doi.org/10.1515/zkri-2016-2021

  8. Y. P. Semushina, S. I. Pechenyuk, L. F. Kuzmich, et al., Russ. J. Phys. Chem. A. 91, 26 (2017). https://doi.org/10.1134/S003602441701023X

    Article  CAS  Google Scholar 

  9. E. Y. Filatov, Y. P. Semushina, and A. N. Gosteva, J. Therm. Anal. Calorim. 134, 355 (2018). https://doi.org/10.1007/s10973-018-7230-y

    Article  CAS  Google Scholar 

  10. D. P. Domonov and S. I. Pechenyuk, Russ. Chem. Bull. 67, 1041 (2018). https://doi.org/10.1007/s11172-018-2177-5

    Article  CAS  Google Scholar 

  11. S. I. Pechenyuk, A. A. Zolotarev, A. N. Gosteva, et al., J. Mol. Struct. 1147, 388 (2017). https://doi.org/10.1016/j.molstruc.2017.06.099

    Article  CAS  Google Scholar 

  12. A. N. Gosteva, P. E. Plyusnin, Y. P. Semushina, et al., J. Therm. Anal. Calorim. 134, 253 (2018). https://doi.org/10.1007/s10973-018-7428-z

    Article  CAS  Google Scholar 

  13. A. N. Gosteva, D. P. Domonov, G. I. Kadyrova, et al., Izv. Vyss. Ucheb. Zaved. Khim. Khim. Tekhnol. 59, (2016). https://doi.org/10.6060/tcct.20165911.5380

  14. S. V. Korenev, A. B. Venediktov, Y. V. Shubin, et al., ChemInform 35, (2004). https://doi.org/10.1002/chin.200417241

  15. V. I. Lagunova, E. Yu. Filatov, P. E. Plusnin, et al., Russ. J. Inorg. Chem. 65, 1566 (2020). https://doi.org/10.1134/S0036023620100150

    Article  CAS  Google Scholar 

  16. P. Kundu, S. Mitra, S. Kumar, et al., Transit. Met. Chem. 20, 417 (1995). https://doi.org/10.1007/BF00141508

    Article  CAS  Google Scholar 

  17. T. Iguro, N. Ikeda, and T. Ohno, Inorg. Chim. Acta 226, 203 (1994). https://doi.org/10.1016/0020-1693(94)04088-5

    Article  CAS  Google Scholar 

  18. P. Kundu, S. K. Dey, C. R. Choudhury, et al., Indian J. Chem., Sect. A 42, 1604 (2003).

    Google Scholar 

  19. G. Brauer, Handbuch der Präparativen Anorganischen Chemie: in Drei Bänden (Ferdinand Enke, Stuttgart, 1978).

  20. http://www.cisp.spb.ru.

  21. H. L. Friedman, J. Polym. Sci., Part C: Polym. Symp. 6, 183 (2007). https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  22. A. Kossoy and Y. Akhmetshin, Process Saf. Prog. 26, 209 (2007). https://doi.org/10.1002/prs.10189

    Article  CAS  Google Scholar 

  23. K. P. Gupta, J. Phase Equilibria Diffus. 27, 173 (2006). https://doi.org/10.1361/154770306X97588

    Article  CAS  Google Scholar 

  24. D. P. Domonov, S. I. Pechenyuk, A. T. Belyaevskii, et al., Nanomaterials 10, 389 (2020). https://doi.org/10.3390/nano10020389

    Article  CAS  PubMed Central  Google Scholar 

  25. Y. Sakabe and H. Ogura, Anal. Sci. 8, 63 (1992). https://doi.org/10.2116/analsci.8.63

    Article  CAS  Google Scholar 

  26. K. Nakomoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th Ed. (John Wiley & Sons, Inc., 2008). https://doi.org/10.1002/9780470405840

    Book  Google Scholar 

  27. E. Siebel, R. D. Fischer, N. A. Davies, et al., J. Organomet. Chem. 604, 34 (2000). https://doi.org/10.1016/S0022-328X(00)00198-4

    Article  CAS  Google Scholar 

  28. M. Ferbinteanu, S. Tanase, M. Andruh, et al., Polyhedron 18, 3019 (1999). https://doi.org/10.1016/S0277-5387(99)00218-1

    Article  CAS  Google Scholar 

  29. X.-Y. Liu, L.-Q. Duan, Q. Wei, et al., Inorganica Chim. Acta 423, 462 (2014). https://doi.org/10.1016/j.ica.2014.09.009

    Article  CAS  Google Scholar 

  30. F. H. O. Ishiruji, N. L. Speziali, M. G. F. Vaz, et al., J. Braz. Chem. Soc. 21, 1195 (2010). https://doi.org/10.1590/S0103-50532010000700006

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to N.F. Sklokina for the X‑ray diffraction analysis and G.I. Kadyrova for the IR analysis of compounds.

Funding

This work was financially supported by Grant of President of Russian Federation (МК-5323.2021.1.3), and has been carried out in the framework of Scientific Research Contracts no. 0186-2021-0026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gosteva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosteva, A., Kossoy, A., Tsvetov, N. et al. Dynamics of Thermal Decomposition of the Double Complex Salt [Cr(ur)6][Co(CN)6]⋅4Н2О. Russ. J. Inorg. Chem. 67, 1257–1263 (2022). https://doi.org/10.1134/S0036023622080150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622080150

Keywords:

Navigation