Skip to main content
Log in

Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

Using a mechanical properties microprobe, measurements of hardness and elastic modulus of tracheid walls in the longitudinal direction of spruce wood were obtained by continuously measuring force and displacement as a diamond indenter impressed a cell wall. Maximum mechanical properties were found at the edges of the walls of angular shaped tracheids. Both the hardness and elastic modulus of latewood cell walls were higher than cell walls in the earlywood. The high spatial resolution of this new concept of mechanical testing allows a direct comparison with ultrastructural and microchemical parameters of lignified cells which opens a wider area of applications for the understanding of intrinsic wood properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H., Ohtani, J., Fukazawa, K. 1991: FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids. IAWA Bull. n.s. 12(4): 431–438

    Google Scholar 

  • Bodig, J., Jayne, B. A. 1982: Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Biblis, E. J. 1970: Effect of thickness of microtensile sections on their tensile properties. Wood and Fiber 2(1): 19–31

    Google Scholar 

  • Bulychev, S. I., Alekhin, V. P., Shorshorov, M.Kh., Ternovskii, A.P. 1976: Mechanical properties of material studied from kinetic diagrams of load versus depth of impression during microimpression. J. Prob. Prochn. 9: 79–83

    Google Scholar 

  • Bulychev, S. I., Alekhin, V. P. 1987: Method of kinetic hardness and microhardness in testing impression by an indenter. J. Zav. Lab. 53(11): 76–80

    Google Scholar 

  • Cave, I. D. 1968: The anisotropic elasticity of the plant cell wall. Wood Sci. Technol. 2: 268–278

    Google Scholar 

  • Denne, M. P. 1989: Definition of latewood according to Mork(1928). IAWA Bull. n.s. 10(1): 59–62

    Google Scholar 

  • Erickson, H. D., Rees, L. W. 1940: The effect of several chemicals on the swelling and crushing strength of wood. J. Agric. Res. 60(9): 593–603

    Google Scholar 

  • Fengel, D. 1967: Ultramicrotomy, its application in wood research. Wood Sci. Technol. 1: 191–204.

    Google Scholar 

  • Gibson, L. J., Ashby, M. F. 1988: Cellular solids. Structure & properties. Pergamon Press

  • Gillis, P. P. 1969: Effect of hydrogen bonds on the axial stiffness of crystalline native cellulose. J. Polym. Sci. A2(7): 783–794

    Google Scholar 

  • Grozdits, G. A., Ifju, G. 1969: Development of tensile strength and related properties in differentiating coniferous xylem. Wood Sci. 1(3): 137–147

    Google Scholar 

  • Hale, J. D., Clermont, L. P. 1963: Influence of prosenchyma cell wall morphology on basic physical and chemical characteristics of wood. J. Polym. Sci. C2: 253–261

    Google Scholar 

  • Janka, G. 1906: tdie Härte der Hölzer. Cbl. ges. Forstwes. 32(5): 193–202

    Google Scholar 

  • Jaswon, M. A., Gillis, P. P., Mark, R. E. 1968: The elastic constants of crystalline native cellulose. Proc. Roy. Soc. A306: 389–412

    Google Scholar 

  • Jayme, G., Fengel, D. 1961: Beobachtungen an Ultradünnschnitten von Fichtenholz. HolzRoh Werkstoff 19(2): 50–55

    Google Scholar 

  • Kennedy, R. W., Ifju, G. 1962: Applications of microtensile testing to thin wood sections. Tappi 45(9): 725–733

    Google Scholar 

  • Kollmann, F. F. F., Coté, W. A. Jr. 1968: Principles of wood science and technology. Vol. 1. Solid wood. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Lee, C.L. 1961: Crystallinity of wood cellulose fibers. For. Prod. J. 11: 108–112

    Google Scholar 

  • Leopold, B., McIntosh, D. C. 1961: Chemical composition and physical properties of wood fibres. III. Tensile strength of individual fibers from alkali extracted loblolly pine holocellulose. Tappi 44(3): 235–240

    Google Scholar 

  • Mark, R. E. 1967: Cell wall mechanics of tracheids. New Haven, London: Yale University Press.

    Google Scholar 

  • Oliver, W. C. 1986: Progress in the development of a mechanical properties microprobe. MRS Bull. 11(5): 15–19

    Google Scholar 

  • Oliver, W. C., Pharr, G. M. 1992: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6): 1564–1583

    Google Scholar 

  • Page, D. H., El-Hosseiny, F., Winkler, K., Lancaster, A. P. S. 1977: Elastic modulus of single wood pulp fibers. Tappi 60(4): 114–117

    Google Scholar 

  • Page, T. F., Oliver, W. C., McHargue, C. J. 1992: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7(2): 450–473

    Google Scholar 

  • Pharr, G. M., Oliver, W. C., Brotzen, F. R. 1992: On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mat. Res. 7(3): 613–617

    Google Scholar 

  • Preston, R. D. 1934: The organization of the cell walls in conifer tracheids. Phil. Trans. R. Soc. London 224: 131–136

    Google Scholar 

  • Salmen, L., de Ruvo, A. 1985: A model for the prediction of fiber elasticity. Wood Fiber Sci. 17(3): 336–350

    Google Scholar 

  • Saka, S., Whiting, P., Fukazawa, K., Goring, D. A. I. 1982: Comparitative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Sci. Technol. 16: 267–277

    Google Scholar 

  • Saka, S., Goring, D. A. I. 1983: The distribution of inorganic constitutents in black spruce wood as determined by TEM-EDXA. Mokuzai Gakkaishi 29(10): 648–656

    Google Scholar 

  • Spurr, A. R. 1969: A low-viscosity epoxy resin embedding medium for electron microscope. J. Ultrastruct. Res. 26: 31–43

    Google Scholar 

  • Stillwell, N. A., Tabor, D. 1961: Elastic recovery of conical indentations. Proc. Phys. Soc. London 78(2): 169–179

    Google Scholar 

  • Suzuki, M. 1969: Relation between Young's modulus and the cell wall structures of Sugi (Cryptomeria japonica D. Don). J. Japan Wood Res. Soc. 15(7): 278–284

    Google Scholar 

  • Treloar, L. R. G. 1960: Calculations of elastic moduli of polymer crystals: III. Cellulose. Polymers 1(3): 290–303

    Google Scholar 

  • Wardrop, A. B., Dadswell, H. E. 1951: Helical thickenings and micellar orientation in the secondary wall of conifer tracheids. Nature 168: 610

    Google Scholar 

  • Wellwood, R. W., Ifju, G, Wilson, J. W. 1965: Intra-increment physical properties of certain western Canadian coniferous species. In: Coté, W.A. Jr. Cellular ultrastructure of woody plants. Syracuse University Press

  • Willems, G., Celis, J. P., Lambrechts, P., Braem, M., Vanherle, G. 1993: Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J. Biomed. Mat. Res. 27: 747–755

    Google Scholar 

  • Wilson, J. W. 1964: Wood characteristics. III. Intra-increment physical and chemical properties. Pulp and Paper Res. Inst. Can. Res. Note No. 45

  • Wu, Y.-T., Wilson, J. W. 1967: Lignification within coniferous growth zones. Pulp Pap. Mag. Can. 68(4): T159-T164

    Google Scholar 

  • Ylinen, A. 1943: Über den Einfluß des Spätholzanteiles auf die Brinelhärte des Holzes. Holz-Roh Werkstoff 6: 125–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was conducted while the senior author was a Visiting Scientist at the Oak Ridge National Lab, Oak Ridge, TN 37831, USA partly with joint fundings from the Austrian Science Foundation (Schrödinger scholarship J799-BIO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimmer, R., Lucas, B.N., Oliver, W.C. et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci.Technol. 31, 131–141 (1997). https://doi.org/10.1007/BF00705928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705928

Keywords

Navigation