Skip to main content
Log in

Orographic and stability effects on day-time, valley-side slope flows

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The effects of orography and initial stability upon the magnitude and configuration of daytime, valley-side slope flows were investigated. A three-dimensional, time-dependent, non-hydrostatic numerical model provided simulations over a range of idealised valley forms for a range of vertical stabilities. The model's short-wave radiation scheme was improved and the runs were for a virtually dry atmosphere. Airflow over the valley is influenced by two distinct stability regimes, separated by a sharp threshold value of 0.37°C km−1. At lower stabilities, flow is strong and predominantly downward. Above the threshold, uplift occurs for all stabilities, decreasing in magnitude with increasing stability. Cross-valley flow increases in the stability range 0.06°C–0.6°C/100 m and decreases at higher stabilities. For a given stability above the threshold value, vertical velocities are directly related to slope angle. Horizontal velocities increase with slope at low angles but there is a suggestion that they decrease with increasing slope angle at high angles. The effect of valley half-width is much smaller than that of slope; greater valley width leads to a weaker cross-valley circulation. Conditions for the development of valley-slope flow configuration in harmony with the underlying orography are derived. A quantitative relationship between the magnitude of the average flow and the average slope and the initial stability is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. J.: 1981, ‘The Katabatic Wind Field and Nocturnal Inversions in Valleys: A Two Dimensional Model’, Report No.1, Dept. Meteorology, Univ. of Bergen, Norway, 34 pp.

    Google Scholar 

  • Anthes, R. A. and Warner, T. T.: 1978, ‘Development of Hydrodynamical Models Suitable for Air Pollution and Other Mesometeorological Studies’,Mon. Weath. Rev. 106, 1045–1078.

    Google Scholar 

  • Atkinson, B. W.: 1981,Meso-scale Atmospheric Circulations, Academic Press, 495 pp.

  • Bader, D. C.: 1985, ‘Meso-scale Boundary Layer Development over Mountainous Terrain’,Atmos. Sci. Pap. 396. Dept. Atmos. Sci., Col. State Univ., Ft. Collins, Col., 251 pp.

    Google Scholar 

  • Banta, R. M.: 1984, ‘Daytime Boundary Layer Evolution over Mountainous Terrain. Part 1. Observations of the Dry Circulations’,Mon. Weath. Rev. 112, 340–356.

    Google Scholar 

  • Banta, R. M.: 1986, ‘Daytime Boundary Layer Evolution over Mountainous Terrain. Part 2. Numerical Studies of Upslope Flow Duration’,Mon. Weath. Rev. 114, 1112–1130.

    Google Scholar 

  • Bell, R. C. and Thomson, R. O. R. Y.: 1980, ‘Valley Ventilation by Cross Winds’,J. Fluid. Mech. 96, 757–767.

    Google Scholar 

  • Blumen, W.: 1990, ‘Atmospheric Processes over Complex Terrain’,Meteorol. Monog. 23(45), Amer. Met. Soc., 323 pp.

    Google Scholar 

  • Carlson, J. D. and Foster, M. R.: 1986, ‘Numerical Study of Some Neutrally and Stably-Stratified Boundary Layer Flows over a Valley at Small Richardson Number’,Tellus 38A, 60–75.

    Google Scholar 

  • Carpenter, K. M.: 1979, ‘An Experimental Forecast using a Non-hydrostatic Meso-scale Model’,Quart. J. R. Meteorol. Soc. 105, 629–656.

    Google Scholar 

  • Clark, T. L.: 1977, ‘A Small-scale Dynamical Model using Terrain-following Coordinate Transformation’,J. Computational Physics 24, 186–215.

    Google Scholar 

  • Clements, W. E. (ed.): 1989, ‘Atmospheric Studies in Complex Terrain’,J. Appl. Meteorol. 28, 405–689.

    Google Scholar 

  • Defant, F.: 1949, ‘Zur theorie der Hangwinde nebst Bermerkungen zur Theorie der Bergund Talwinde’,Arch. Met. Geophys. Bioklim A (1), 421–450.

    Google Scholar 

  • Egger, J.: 1981a, ‘On the Linear Two-dimensional Theory of Thermally Induced Slope Winds’,Beit. Phys. Atmos. 54, 465–481.

    Google Scholar 

  • Egger, J.: 1981b, ‘Thermally Forced Circulations in a Valley’,Geophys. Astrophys. Fluid Dynamics 17, 255–279.

    Google Scholar 

  • Egger, J.: 1990, ‘Thermally Forced Flows: Theory’, in W. Blumen (ed.),Atmospheric Processes over Complex Terrain, Meteorol. Monog. (Amer. Met. Soc.), Vol. 23, No. 45, pp. 43–58.

  • Estoque, M.: 1961, ‘A Theoretical Investigation of the Sea Breeze’,Quart. J. R. Meteorol. Soc. 87, 136–146.

    Google Scholar 

  • Fast, J. D. and Takle, E. S.: 1988a, ‘Evaluation of an Alternative Method of Numerically Modelling Non-hydrostatic Flows over Irregular Terrain’,Boundary-Layer Meteorol. 44, 181–206.

    Google Scholar 

  • Fast, J. D. and Takle, E. S.: 1988b, ‘Application of a Quasi-nonhydrostatic Paramaterization for Numerically Modelling Neutral Flow over an Isolated Hill’,Boundary Layer Meteorol 44, 285–305.

    Google Scholar 

  • Gal-Chen, T. and Somerville, R. C. J.: 1975, ‘Numerical Solution of the Navier-Stokes Equations with Topography’,J. Computational Physics 17, 276–310.

    Google Scholar 

  • Garnier, B. J. and Ohmura, A.: 1968, ‘A Method of Calculating the Direct Shortwave Radiation Income of Slopes’,J. Appl. Meteorol. 7, 796–800.

    Google Scholar 

  • Garrett, A. J.: 1983, ‘Drainage Flow Prediction with a One-dimensional Model Including Canopy, Soil and Radiation Parameterization’,J. Clim. Appl. Meteorol. 22, 79–91.

    Google Scholar 

  • Garrett, A. J. and Smith, F. G.: 1984, ‘Two-dimensional Simulations of Drainage Winds and Diffusion Compared to Observations’,J. Clim. Appl. Meteorol. 23, 597–610.

    Google Scholar 

  • Gleeson, T. A.: 1951, ‘On the Theory of Cross-valley Winds Arising from Differential Heating of the Slopes’,J. Meteorol. 8, 398–405.

    Google Scholar 

  • Gross, G.: 1988, ‘A Numerical Estimation of the Deforestation Effects on Local Climate in the Area of the Frankfurt International Airport’,Beitr. Phys. Atmos. 61, 219–231.

    Google Scholar 

  • Gross, G., Vogel, H. and Wipperman, F.: 1987, ‘Dispersion over and Around a Steep Obstacle for Varying Thermal Stratification — Numerical Simulations’,Atmos. Envir. 21, 483–490.

    Google Scholar 

  • Heilman, W. and Dobosy, R.: 1985, ‘A Nocturnal Atmospheric Drainage Flow Simulation Investigating the Application of One-dimensional Modelling and Current Turbulence Schemes’,J. Clim. Appl. Meteorol. 24, 924–936.

    Google Scholar 

  • Hughes, R. L.: 1978, ‘A Numerical Simulation of Meso-scale Flow over Mountainous Terrain’,Atmos. Sci. Pap. 303, Dept. Atmos. Sci., Colorado State Univ., Ft. Collins, 30 pp.

    Google Scholar 

  • Klemp, J. B. and Wilhelmson, R. B.: 1978, ‘The Simulation of Three-dimensional Convective Storm Dynamics’,J. Atmos. Sci. 35, 1070–1096.

    Google Scholar 

  • Kondo, J. and Okusa, N.: 1990, ‘A Simple Numerical Prediction Model of Nocturnal Cooling in a Basin with Various Topographical Parameters’,J. Appl. Meteorol. 29, 604–619.

    Google Scholar 

  • Magata, M. and Orgura, S.: 1967, ‘On the Airflow over Mountains under the Influence of Heating and Cooling’,J. Meteorol. Soc. Jap 45, 83–95.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1971, ‘A Numerical Study of Airflow over Irregular Terrain’,Contrib. Phys. Atmos. 50, 98–113.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1975, ‘A Numerical Study of the Airflow over Mountains using the Two-dimensional Version of the University of Virginia Mesoscale Model’,J. Atmos. Sci. 32, 2144–2155.

    Google Scholar 

  • Mannouji, N.: 1982, ‘A Numerical Experiment on the Mountain and Valley Winds’,J. Meteorol. Soc. Jap. 60, 1085–1105.

    Google Scholar 

  • Martin, C. L. and Pielke, R. A.: 1983, ‘The Adequacy of the Hydrostatic Assumption in Sea-breeze Modelling over Flat Terrain’,J. Atmos. Sci. 40, pp. 1472–1481.

    Google Scholar 

  • Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 53, 117–163.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary Layer Development over Sloping Terrain’,J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1984, ‘Numerical Simulation of Slope and Mountain Flows’,J. Clim. Appl. Meteorol. 23, 1441–1453.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’,Rev. Geophysics and Space Physics 20, 851–875.

    Google Scholar 

  • Nicholls, M. E., Pielke, R. A. and Cotton, W. R.: 1991, ‘A Two-dimensional Numerical Investigation of the Interaction between Sea Breezes and Deep Convection over the Florida Peninsular’,Mon. Weath. Rev. 119, 298–323.

    Google Scholar 

  • Orville, H. D.: 1964, ‘On Mountain Upslope Winds’,J. Atmos. Sci. 21, 622–633.

    Google Scholar 

  • Pandolfo, J. P.: 1969, ‘Motions with Inertial and Diurnal Period in a Numerical Model of the Navifacial Boundary Layer’,J. Marine Sci. 27, 301–317.

    Google Scholar 

  • Pielke, R. A.: 1972, ‘Comparison of a Hydrostatic and an Anelastic Dry Shallow Primitive Equation Model’,NOAA Tech. Mem. ERL OD-13, 47 pp.

  • Pielke, R. A.: 1974, ‘A Three Dimensional Numerical Model of the Sea-Breeze over South Florida’,Mon. Weath. Rev. 102, 115–139.

    Google Scholar 

  • Pielke, R. A.: 1984,Mesoscale Meteorological Modelling, Academic Press, 612 pp.

  • Segal, M., Ookouchi, Y. and Pielke, R. A.: 1987, ‘On the Effect of Steep Slope Orientation on the Intensity of Daytime Upslope Flow’,J. Atmos. Sci. 44, 3587–3592.

    Google Scholar 

  • Tapp, M. C. and White, P. W.: 1976, ‘A Non-hydrostatic Meso-scale Model’,Quart. J. R. Meteorol. Soc. 102, 277–296.

    Google Scholar 

  • Thyer, N. H.: 1966, ‘A Theoretical Explanation of Mountain and Valley Winds by Numerical Method’,Archiv. fur Met. Geoph. und Bioklim. 17A, 318–347.

    Google Scholar 

  • Tjemkes, S. A. and Duynkerke, P. G.: 1989, ‘The Nocturnal Boundary Layer: Model Calculations Compared with Observations’,J. Appl. Meteorol. 28, 161–175.

    Google Scholar 

  • Tripoli, G. J. and Cotton, W. R.: 1982, ‘The Colorado State University Three-dimensional Cloud/Meso-scale Model: Part 1. General Theoretical Framework and Sensitivity Experiments’,J. Rech. Atmos. 16, 185–219.

    Google Scholar 

  • Vergeiner, I.: 1987, ‘An Elementary Valley Wind Model’,Meteorol. and Atmos. Physics 36, 255–263.

    Google Scholar 

  • Vogel, B., Gross, G. and Wipperman, F.: 1986, ‘MESOKLIP (First Special Observation Period): Observations and Numerical Simulation — A Comparison’,Boundary-Layer Meteorol. 35, 83–102.

    Google Scholar 

  • Wallbaum, T.: 1982,Numerische Simulation Atmosphariskher Stromungen im Meso-scale Gamma, Ph.D. Dissertation, Technical Univ., Darmstadt, 185 pp.

    Google Scholar 

  • Whiteman, C. D.: 1990, ‘Observations of Thermally Developed Wind Systems in Mountainous Terrain’, in W. Blumen (ed.)Atmospheric Processes over Complex Terrain. Meteorol. Monog. (Amer. Met. Soc.), Vol. 23, No. 45, pp. 5–42.

  • Wipperman, F.: 1984, ‘The Applicability of Several Approximations in Meso-scale Modelling — A Linear Approach’,Contrib. Atmos. Phys. 54, 298–308.

    Google Scholar 

  • Xue, M. and Thorpe, A. J.: 1991, ‘A Meso-scale Numerical Model using the Non-hydrostatic Pressure Based Sigma Coordinate Equations: Model Experiments with Dry Mountain Flows’,Mon. Weath. Rev. 119, 1168–1185.

    Google Scholar 

  • Yamada, T.: 1978,A Three Dimensional Numerical Study of Complex Atmospheric Circulations Produced by Terrain, Proc. AMS Conf. Sierra Nevada Meteorol, pp. 61–67.

  • Yamada, T. and Bunker, S.: 1989, ‘A Numerical Model Study of Nocturnal Drainage Flows with Strong Wind and Temperature Gradients’,J. Appl. Meteorol. 28, 545–554.

    Google Scholar 

  • Yang, X.: 1991, ‘A Study of Non-hydrostatic Effects on Idealized Sea Breeze Systems’,Boundary-Layer Meteorol. 54, 183–208.

    Google Scholar 

  • Ye, Z. J., Garrett, J. R., Segal, M. and Pielke, R. A.: 1990, ‘On the Impact of Atmospheric Thermal Stability on the Characteristics of Nocturnal Downslope Flows’,Boundary-Layer Meteorol. 51, 77–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, B.W., Shahub, A.N. Orographic and stability effects on day-time, valley-side slope flows. Boundary-Layer Meteorol 68, 275–300 (1994). https://doi.org/10.1007/BF00705601

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705601

Keywords

Navigation