Skip to main content
Log in

A Case Study of the Mechanisms Modulating the Evolution of Valley Fog

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a valley fog case study in which radiation fog is modulated by topographic effects using data obtained from a field campaign conducted in Heber Valley, Utah from January 7–February 1, 2015, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. We use data collected on January 9, 2015 to gain insight into relationships between typical shallow radiation fog, turbulence, and gravity waves associated with the surrounding topography. A ≈ 10–30 m fog layer formed by radiative cooling was observed from 0720 to 0900 MST under cold air temperatures (≈−9 °C), near-saturated (relative humidity with respect to water ≈95 %), and calm wind (mostly <0.5 m s−1) conditions. Drainage flows were observed occasionally prior to fog formation, which modulated heat exchanges between air masses through the action of internal gravity waves and cold-air pool sloshing. The fog appeared to be triggered by cold-air advection from the south (≈200°) at 0700 MST. Quasi-periodic oscillations were observed before and during the fog event with a time period of about 15 min. These oscillations were detected in surface pressure, temperature, sensible heat flux, incoming longwave radiation, and turbulent kinetic energy measurements. We hypothesize that the quasi-periodic oscillations were caused by atmospheric gravity waves with a time period of about 10–20 min based on wavelet analysis. During the fog event, internal gravity waves led to about 1 °C fluctuations in air temperatures. After 0835 MST when net radiation became positive, fog started to dissipate due to the surface heating and heat absorption by the fog particles. Overall, this case study provides a concrete example of how fog evolution is modulated by very weak thermal circulations in mountainous terrain and illustrates the need for high density vertical and horizontal measurements to ensure that the highly spatially varying physics in complex terrain are sufficient for hypothesis testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adedokun, J. A., & Holmgren, B. (1993). Acoustic sounder doppler measurement of the wind fields associated with a mountain stratus transformed into a valley fog: a case study. Atmospheric Environment. Part A. General Topics, 27, 1091–1098.

    Article  Google Scholar 

  • Ahrens, C.D. (2012). Meteorology today: an introduction to weather, climate, and the environment, 10th edn. (Cengage Learning).

  • Argentini, S., Mastrantonio, G., & Lena, F. (1999). Case studies of the wintertime convective boundary-layer structure in the urban area of Milan, Italy. Boundary-Layer Meteorology, 93, 253–267.

    Article  Google Scholar 

  • Bergot, T., & Guedalia, D. (1994). Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Monthly Weather Review, 122, 1218–1230.

    Article  Google Scholar 

  • Bossche, M., & de Wekker, S.F.J. (2016). Spatiotemporal variability of surface meteorological variables during fog and no-fog events in the Heber Valley, UT; selected case studies from MATERHORN-fog. Pure and Applied Geophysics (in press).

  • Choularton, T. W., Fullarton, G., Latham, J., Mill, C. S., Smith, M. H., & Stromberg, I. M. (1981). A field study of radiation fog in Meppen, West Germany. Quarterly Journal Royal Meteorological Society, 107, 381–394.

    Article  Google Scholar 

  • Cuxart, J., & Jiménez, M. A. (2012). Deep radiation fog in a wide closed valley: study by numerical modeling and remote sensing. Pure and Applied Geophysics, 169, 911–926.

    Article  Google Scholar 

  • Duynkerke, P. (1991). Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog. Quarterly Journal Royal Meteorological Society, 117, 1207–1224.

    Article  Google Scholar 

  • Duynkerke, P. (1999). Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorology, 90, 447–477.

    Article  Google Scholar 

  • Ellrod, G. P., & Gultepe, I. (2007). Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Pure and Applied Geophysics, 164, 1193–1205.

    Article  Google Scholar 

  • Fernando, H. J. S., Pardyjak, E. R., Di Sabatino, S., Chow, F. K., de Wekker, S. F. J., Hoch, S. W., et al. (2015). The MATERHORN: unraveling the intricacies of mountain weather. Bulletin of the American Meteorological Society, 96, 1945–1968.

    Article  Google Scholar 

  • Finnigan, J. J. (1988). Kinetic energy transfer between internal gravity waves and turbulence. Journal of the Atmospheric Sciences, 45, 486–505.

    Article  Google Scholar 

  • Fitzjarrald, D., & Lala, G. (1989). Hudson valley fog environment. Journal of Applied Meteorology, 28, 1303–1328.

    Article  Google Scholar 

  • Gerber, H. (1981). Microstructure of a radiation fog. Journal of the Atmospheric Sciences, 38, 454–458.

    Article  Google Scholar 

  • Golding, B. W. (1993). A study of the influence of terrain on fog development. Monthly Weather Review, 121, 2529–2541.

    Article  Google Scholar 

  • Gultepe, I., Fernando, H.J.S., Pardyjak, E.R., Hoch, S.W., Silver, Z., Creegan, E., Leo, L.S., Pu, Z., de Wekker, S., & Hang, C. (2016). Mountain ice fog: observations and predictability. Pure and Applied Geophysics. doi:10.1007/s00024-016-1374-0

  • Gultepe, I., Hansen, B., Cober, S. G., Pearson, G., Milbrandt, J. A., Platnick, S., et al. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90, 341–359.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G., Hudak, D., Nissen, R., & Strapp, J. W. (2000). Dynamical and microphysical characteristics of arctic clouds during BASE. Journal of Climate, 13, 1225–1254.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., Joe, P., Kucera, P., Theriault, J. M., & Fisico, T. (2012). Roundhouse (RND) mountain top research site: measurements and uncertainties for winter alpine weather conditions. Pure and Applied Geophysics, 171, 59–85.

    Article  Google Scholar 

  • Gultepe, I., Isaac, G. A., Williams, A., Marcotte, D., & Strawbridge, K. B. (2003). Turbulent heat fluxes over leads and polynyas, and their effects on arctic clouds during FIRE. ACE: aircraft observations for April 1998. Atmosphere-Ocean, 41, 15–34.

    Article  Google Scholar 

  • Gultepe, I., Minnis, P., Milbrandt, J., Cober, S. G., Nguyen, L., Flynn, C., et al. (2008). The fog remote sensing and modeling (FRAM) field project: visibility analysis and remote sensing of fog. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, 7088(12), 708803.

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: a review of past achievements and future perspectives. Pure and Applied Geophysics, 164, 1121–1159.

    Article  Google Scholar 

  • Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A. J., et al. (2014). A review on ice fog measurements and modeling. Atmospheric Research, 151, 2–19.

    Article  Google Scholar 

  • Haeffelin, M., Bergot, T., Elias, T., Tardif, R., Carrer, D., Chazette, P., et al. (2010). PARISFOG: shedding new light on fog physical processes. Bulletin of the American Meteorological Society, 91(6), 767–783.

    Article  Google Scholar 

  • Hodges, D., & Pu, Z. (2015). The climatology, frequency, and distribution of cold season fog events in Northern Utah. Pure and Applied Geophysics, 1–15. doi:10.1007/s00024-015-1187-6.

  • Holets, S., & Swanson, R. N. (1981). High-inversion fog episodes in Central California. Journal of Applied Meteorology, 20, 890–899.

    Article  Google Scholar 

  • Horel, J., Ptter, T., Dunn, L., Steenburgh, W. J., Eubank, M., Splitt, M., et al. (2002). Weather support for the 2002 winter olympic and paralympic games. Bulletin of the American Meteorological Society, 83(2), 227. (24).

    Article  Google Scholar 

  • Jensen, D.D., Nadeau, D.F., Hoch, S.W., & Pardyjak, E.R. (2015). Observations of near-surface heat-flux and temperature profiles through the early evening transition over contrasting surfaces. Boundary-Layer Meteorology, 1–21. doi:10.1007/s10546-015-0067-z.

  • Kurita, S., Okada, K., Naruse, H., Ueno, T., & Mikami, M. (1990). Structure of a fog in the dissipation stage over land. Atmospheric Environment. Part A. General Topics, 24, 1473–1486.

    Article  Google Scholar 

  • Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., et al. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94, 51–63.

    Article  Google Scholar 

  • Lee, T. (1987). Urban clear islands in California central valley fog. Monthly Weather Review, 115, 1794–1796.

    Article  Google Scholar 

  • Mahrt, L. (2013). Stably stratified atmospheric boundary layers. Annual Review of Fluid Mechanics, 46, 23–45.

    Article  Google Scholar 

  • Manoj, M. G., & Devara, P. C. S. (2011). Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station. Annales Geophysicae, 29, 455–465.

    Article  Google Scholar 

  • Mason, J. (1982). The physics of radiation fog. Meteorological Society of Japan, 60, 486–499.

    Google Scholar 

  • Meillier, Y. P., Frehlich, R. G., Jones, R. M., & Balsley, B. B. (2008). Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. Journal of the Atmospheric Sciences, 65, 1414–1427.

    Article  Google Scholar 

  • Monti, P., Fernando, H.J.S., Princevac, M., Chan, W.C., Kowalewski, T.A., Pardyjak, E.R. (2002), Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope, Journal Atmospheric Science. 59, 2513–2534

    Article  Google Scholar 

  • Müller, M. D., Schmutz, C., & Parlow, E. (2007). A one-dimensional ensemble forecast and assimilation system for fog prediction. Pure and Applied Geophysics, 164, 1241–1264.

    Article  Google Scholar 

  • Nappo, C. J. (2002). An introduction to atmospheric gravity waves. London: Academic Press.

    Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA), (2005), Surface Weather Observations and Reports, (Federal Meteorological Handbook).

  • Pilié, R. J., Mack, E. J., Kocmond, W. C., Rogers, C. W., & Eadie, W. J. (1975). The life cycle of valley fog. Part I: micrometeorological characteristics. Journal of Applied Meteorology, 14, 347–363.

    Article  Google Scholar 

  • Porch, W. M., Clements, W. E., & Coulter, R. L. (1991). Nighttime valley waves. Journal of Applied Meteorology, 30, 145–156.

    Article  Google Scholar 

  • Price, J., Porson, A., & Lock, A. (2015). An observational case study of persistent fog and comparison with an ensemble forecast model. Boundary-Layer Meteorology, 155, 301–327.

    Article  Google Scholar 

  • Price, J. D., Vosper, S., Brown, A., Ross, A., Clark, P., Davies, F., et al. (2011). COLPEX: field and numerical studies over a region of small hills. Bulletin of the American Meteorological Society, 92, 1636–1650.

    Article  Google Scholar 

  • Pu, Z., Chachere, C.N., Hoch, S.W., Pardyjak, E., & Gultepe, I. (2016). Numerical prediction of cold season fog events over complex terrain: the performance of the WRF model during MATERHORN-fog and early evaluation. Pure and Applied Geophysics. doi:10.1007/s00024-016-1375-z.

  • Rees, J., Staszewski, W., & Winkler, J. (2001). Case study of a wave event in the stable atmospheric boundary layer overlying an Antarctic ice shelf using the orthogonal wavelet transform. Dynamics of Atmospheres and Oceans, 34, 245–261.

    Article  Google Scholar 

  • Richiardone, R., Alessio, S., Canavero, F., Einaudi, F., & Longhetto, A. (1995). Experimental study of atmospheric gravity waves and visibility oscillations in a fog episode. II Nuovo Cimento C, 18, 647–662.

    Article  Google Scholar 

  • Roach, W. T. (1976). On some quasi-periodic oscillations observed during a field investigation of radiation fog. Quarterly Journal Royal Meteorological Society, 102, 355–359.

    Article  Google Scholar 

  • Rodhe, B. (1962). The effect of turbulence on fog formation. Tellus, 14, 49–86.

    Article  Google Scholar 

  • Román-Cascón, C., Yagüe, C., Mahrt, L., Sastre, M., Steeneveld, G. J., Pardyjak, E. R., et al. (2015a). Interactions among drainage flows, gravity waves and turbulence: a BLLAST case study. Atmospheric Chemistry and Physics, 15, 9031–9047.

    Article  Google Scholar 

  • Román-Cascón, C., Yagüe, C., Sastre, M., Maqueda, G., Salamanca, F., & Viana, S. (2012). Observations and WRF simulations of fog events at the Spanish Northern Plateau. Advances in Science and Research, 8, 11–18.

    Article  Google Scholar 

  • Román-Cascón, C., Yagüe, C., Viana, S., Sastre, M., Maqueda, G., Lothon, M., et al. (2015b). Near-monochromatic ducted gravity waves associated with a convective system close to the Pyrenees. Quarterly Journal Royal Meteorological Society, 141, 1320–1332.

    Article  Google Scholar 

  • Steeneveld, G. J., Ronda, R. J., & Holtslag, A. A. M. (2014). The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary-Layer Meteorology, 154, 265–289.

    Article  Google Scholar 

  • Sun, J., Nappo, C. J., Mahrt, L., Belu, D., Stauffer, D. R., Pulido, M., et al. (2015). Review of wave-turbulence interactions in the stable atmospheric boundary layer. Reviews of Geophysics, 53, 956–993.

    Article  Google Scholar 

  • Terradellas, E., Ferreres, E., & Soler, M. R. (2008). Analysis of turbulence in fog episodes. Advances in Science and Research, 2, 31–34.

    Article  Google Scholar 

  • Thom, D. J. (1965). The geography of heber valley. Utah: University of Utah.

    Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61–78.

    Article  Google Scholar 

  • Udina, M., Soler, M. R., Viana, S., & Yagüe, C. (2013). Model simulation of gravity waves triggered by a density current. Quarterly Journal Royal Meteorological Society, 139, 701–714.

    Article  Google Scholar 

  • Uematsu, A., Hashiguchi, H., Yamamoto, M. K., Dhaka, S. K., & Fukao, S. (2007). Influence of gravity waves on fog structure revealed by a millimeter-wave scanning doppler radar. Journal Geophysical Research, 112, D07207.

    Article  Google Scholar 

  • Underwood, S. J., Ellrod, G. P., & Kuhnert, A. L. (2004). A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the goes nighttime fog product. Journal of Applied Meteorology, 43, 297–311.

    Article  Google Scholar 

  • Van Der Velde, I. R., Steeneveld, G. J., Wichers Schreur, B. G. J., & Holtslag, A. A. M. (2010). Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Monthly Weather Review, 138, 4237–4253.

    Article  Google Scholar 

  • Viana, S., Terradellas, E., & Yagüe, C. (2010). Analysis of gravity waves generated at the top of a drainage flow. Journal of the Atmospheric Sciences, 67, 3949–3966.

    Article  Google Scholar 

  • Viana, S., Yagüe, C., & Maqueda, G. (2009). Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign. Boundary-Layer Meteorology, 133, 165–188.

    Article  Google Scholar 

  • Welch, R. M., Ravichandran, M. G., & Cox, S. K. (1986). Prediction of quasi-periodic oscillations in radiation fogs. Part I: comparison of simple similarity approaches. Journal of the Atmospheric Sciences, 43, 633–651.

    Article  Google Scholar 

  • Whiteman, C. D., Zhong, S., Shaw, W. J., Hubbe, J. M., Bian, X., & Mittelstadt, J. (2001). Cold pools in the Columbia Basin. Weather and Forecasting, 16, 432–447.

    Article  Google Scholar 

  • Ye, X., Wu, B., & Zhang, H. (2014). The turbulent structure and transport in fog layers observed over the Tianjin area. Atmospheric Research, 153, 217–234.

    Article  Google Scholar 

  • Zhou, B., & Ferrier, B. S. (2008). Asymptotic analysis of equilibrium in radiation fog. Journal of Applied Meteorology and Climatology, 47, 1704–1722.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Office of Naval Research Award #N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. We are grateful the John Pace and Dragan Zajic from the U.S. Army Dugway Proving grounds for their gracious help and instrument contributions to the project. The authors want to thank Stephan de Wekker for providing data from the automatic weather station. We would also like to thank Alexei Perelet, Derek Jensen, and Matt Jeglum for their help in the field. We are also extremely grateful to Grant Kohler and the Kohler family for the use of their farm during the experiment as well as all of the additional help that they regularly provided during the experiment. The authors are extremely grateful for all of the help during the field campaign, and the scientific insight provided by the MATERHORN team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Pardyjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, C., Nadeau, D.F., Gultepe, I. et al. A Case Study of the Mechanisms Modulating the Evolution of Valley Fog. Pure Appl. Geophys. 173, 3011–3030 (2016). https://doi.org/10.1007/s00024-016-1370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1370-4

Keywords

Navigation