Skip to main content
Log in

Heteronuclear diatomic transition-metal cluster ions in the gas phase: Reactivity and thermochemistry of AgFe+

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The gas-phase chemistry of AgFe+ was studied by using Fourier transform ion cyclotron resonance mass spectrometry. AgFe+ is unreactive with alkanes but reacts with cyclic and linear (C4–C8) alkenes. The primary reactions are dominated by dehydrogenation and condensation. In addition, cluster splitting is observed in the reaction of AgFe+ with benzene. Secondary reactions generally involve cluster splitting with the loss of Ag, although AgFeC5H +6 is observed to dehydrogenate cyclopentene to yield AgFeC10H +12 . Ion-molecule reactions, collision-induced dissociation, and photodissociation experiments were used to determine the bond energiesD°(Fe+−Ag)=53±7 kcal/mol andD°(Ag+−Fe)=46±7 kcal/mol. These values in turn were used to calculateΔH f (AgFe+)=296±7 kcal/mol andIP(AgFe)=6.5±0.3 eV. Related chemical and physical properties of CuFe+ are presented for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Whyman,in B. F. G. Johnson (ed.),Transition Metal Clusters (Wiley & Sons, New York, 1980).

    Google Scholar 

  2. R. E. Smalley,in R. J. Bartlett (ed.),Comparison of Ab-Initio Quantum Chemistry to Experiment (D. Reidel Publ. Co., Dordrecht, Holland, 1985), pp. 53–65.

    Google Scholar 

  3. P. A. Montano, G. K. Shenoy, E. E. Alp, W. Schulze, and J. Urban (1986).Phys. Rev. Lett. 56, 2076.

    Google Scholar 

  4. G. A. Ozin and D. F. McIntosh (1986).J. Phys. Chem. 90, 5756.

    Google Scholar 

  5. S. W. Buckner and B. S. Freiser,in D. H. Russell (ed.),Gas Phase Inorganic Chemistry (Plenum Press, New York, 1989), pp. 279–321.

    Google Scholar 

  6. E. C. Tews and B. S. Freiser (1987).J. Am. Chem. Soc. 109, 4433.

    Google Scholar 

  7. D. B. Jacobson and B. S. Freiser (1985).J. Am. Chem. Soc. 107, 1581.

    Google Scholar 

  8. D. B. Jacobson and B. S. Freiser (1986).J. Am. Chem. Soc. 108, 27.

    Google Scholar 

  9. R. L. Hettich and B. S. Freiser (1985).J. Am. Chem. Soc. 107, 6222.

    Google Scholar 

  10. Y. Huang, S. W. Buckner, and B. S. Freiser,in P. Jena, B. K. Rao, and S. N. Khanna (eds.),Physics and Chemistry of Small Clusters (Plenum, New York, 1987), pp. 891–895;

    Google Scholar 

  11. Y. Huang and B. S. Freiser (1988).J. Am. Chem. Soc. 110, 387.

    Google Scholar 

  12. S. W. Buckner and B. S. Freiser (1989).J. Phys. Chem. 93, 3667.

    Google Scholar 

  13. L. M. Roth, B. S. Freiser, C. W. Bauschlicher, Jr., H. Partridge, and S. R. Langhoff (1991).J. Am. Chem. Soc. 113, 3274.

    Google Scholar 

  14. R. B. Cody and B. S. Freiser (1982).Int. J. Mass Spectrom. Ion Phys. 41, 199;

    Google Scholar 

  15. R. B. Cody, R. C. Burnier, and B. S. Freiser (1982).Anal. Chem. 54, 96.

    Google Scholar 

  16. R. C. Burnier, G. D. Byrd, and B. S. Freiser (1981).J. Am. Chem. Soc. 103, 4360.

    Google Scholar 

  17. M. B. Comisarow, V. Grassi, and G. Parisod (1978).Chem. Phys. Lett. 57, 413.

    Google Scholar 

  18. M. B. Comisarow and A. G. Marshall (1976).J. Chem. Phys. 64, 110.

    Google Scholar 

  19. W. K. Meckstroth and D. P. Ridge (1984).Int. J. Spectrom. Ion Phys. 61, 149;

    Google Scholar 

  20. D. J. A. Fredeen and D. H. Russell (1987).J. Am. Chem. Soc. 109, 3903.

    Google Scholar 

  21. J. H. Ng and B. S. Freiser (unpublished results).

  22. D. B. Jacobson and B. S. Freiser (1983).J. Am. Chem. Soc. 105, 7484.

    Google Scholar 

  23. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard,Journal of Physical and Chemical Reference Data (American Institute of Physics and the American Chemical Society, New York, 1988), Vol. 17, Suppl. 1.

    Google Scholar 

  24. R. L. Hettich and B. S. Freiser,in M. C. Buchanan (ed.),Fourier Transform Mass Spectrometry: Evolution, Innovation, and Applications (American Chemical Society, Washington, D. C., 1987), pp. 155–174.

    Google Scholar 

  25. S. W. Buckner and B. S. Freiser (1988).Polyhedron 7, 1583.

    Google Scholar 

  26. A. R. Miedema, inFaraday Symposia, Diatomic Metals and Metallic Clusters (The Faraday Division, The Royal Society of Chemistry, London, 1980), pp. 136–148.

    Google Scholar 

  27. J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field,Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions (Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., Washington, D.C., 1969), p. 261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, J.H., Gord, J.R. & Freiser, B.S. Heteronuclear diatomic transition-metal cluster ions in the gas phase: Reactivity and thermochemistry of AgFe+ . J Clust Sci 2, 43–56 (1991). https://doi.org/10.1007/BF00702934

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702934

Key words

Navigation