Skip to main content
Log in

The effects of constant light and light pulses on the circadian rhythm in the eye ofAplysia

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    A circadian rhythm in the frequency and amplitude of compound action potential (CAP) from the isolated eye ofAplysia persists for a week or morein vitro in constant darkness. This rhythm has a period of about 26 hours (Figs. 1,2) in a specific culture medium and may express several periodic amplitude components (Fig. 3).

  2. 2.

    Constant light (LL) of low intensity shortens the period (Pig. 4) and reduces the range of oscillations. Higher intensity LL results in a further reduction in range, a greater variability of CAP frequency from hour to hour, alterations in the period, and possibly rhythm splits (Fig. 5).

  3. 3.

    Pulses of light given at specific points in the circadian cycle shift the phase of the rhythm (Fig. 7). The resulting phase response curve (Fig. 8) is similar to response curves for the activity of diurnal animals and potassium pulses on the eye rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation a review. J. Herpetol.4, 99–112 (1970)

    Google Scholar 

  • Aschoff, J.: Exogenous and endogenous components in circadian rhythm. Cold Spr. Harb. Symp. quant. Biol.25, 11–28 (1960)

    Google Scholar 

  • Aschoff, J.: Response curves in circadian periodicity. In: Circadian clocks (ed. J. Aschoff), p. 95–111. Amsterdam: North Holland Publishing Co. 1965

    Google Scholar 

  • Barlow, J.: Cold Spr. Harb. Symp. quant. Biol.25, 54–55 (1960)

    Google Scholar 

  • DeCoursey, P. J.: Phase control of activity in a rodent. Cold Spr. Harb. Symp. quant. Biol.25, 44–55 (1960)

    Google Scholar 

  • Eskin, A.: Properties of theAplysia visual system:in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z. vergl. Physiol.74, 353–371 (1971)

    Google Scholar 

  • Eskin, A.: Phase shifting a circadian rhythm in the eye ofAplysia by high potassium pulses. J. comp. Physiol.80, 353–376 (1972)

    Google Scholar 

  • Hayes, F. R., Pelluet, D.: Inorganic constituents of molluscs. J. Mar. Biol. Assoc. U. K.26, 580–589 (1947)

    Google Scholar 

  • Hoffmann, K.: Splitting of the circadian rhythm as a function of light intensity. In: Biochronometry (ed. M. Menaker), p. 134–145. Washington, D. C.: National Academy Sciences 1971

    Google Scholar 

  • Jacklet, J. W.: Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye ofAplysia. Science164, 562–563 (1969a)

    Google Scholar 

  • Jacklet, J. W.: Electrophysiological organization of the eye ofAplysia. J. Gen. Physiol.53, 21–42 (1969b)

    Google Scholar 

  • Jacklet, J. W.: A circadian rhythm in optic nerve impulses from an isolated eye in darkness. In: Biochronometry, (ed. M. Menaker), p. 351–362. Washington, D. C.: National Academy Science 1971

    Google Scholar 

  • Jacklet, J. W.: Circadian locomotor activity inAplysia. J. comp. Physiol.79, 325–341 (1972)

    Google Scholar 

  • Jacklet, J. W.: Neuronal population interactions in a circadian rhythm inAplysia. Neurobiology of invertebrates, Tihany 1971. (ed. J. Salánki), Hungarian Academy Sciences, Budapest pp. 363–380, 1973

    Google Scholar 

  • Jacklet, J. W., Geronimo, J.: Circadian rhythm: Population of interacting neurons. Science174, 299–302 (1971)

    Google Scholar 

  • Menaker, M.: Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc. nat. Acad. Sci. (Wash.)59, 414–421 (1968)

    Google Scholar 

  • Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol.25, 159–184 (1960)

    Google Scholar 

  • Pittendrigh, C. S.: The circadian oscillation inDrosophila pseudoobscura pupae: A model for the photoperiodic clock. Z. Pflanzenphysiol.54, 275–307 (1966)

    Google Scholar 

  • Strumwasser, F., Bahr, R.: Prolongedin vitro culture and autoradiographic studies of neurons inAplysia. Fed. Proc.25, 512 (1966)

    Google Scholar 

  • Swade, R. H.: A split activity rhythm under fluctuating light cycles. In: Biochronometry (ed. M. Menaker), p. 148–149. Washington D.C.: National Academy Science 1971

    Google Scholar 

  • Truman, J., Riddiford, L.: Neuroendocrine control of ecdysis in silkworms. Science167, 1624–1626 (1970)

    Google Scholar 

  • Truman, J. W., Sokolove, P. G.: Silk Moth eclosion: Hormonal triggering of a centrally programmed pattern of behavior. Science175, 1491–1493 (1972)

    Google Scholar 

  • Wiener, J.: Nonlinear problems in random theory, p. 69–70 Cambridge: MIT Press 1958

    Google Scholar 

  • Winfree, A. T.: Biological rhythms and the behavior of populations of coupled oscillators. J. theor. Biol.16, 15–42 (1967)

    Google Scholar 

  • Winfree, A. T.: Comments on Rhythm Splitting, p. 150–151. In: Biochronometry (ed. M. Menaker). Washington, D. C.: National Academy Sciences 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I thank Heb Soon Kim for technical assistance and Arthur Winfree for comments on a preliminary draft. Supported by NIH grant 08443.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacklet, J.W. The effects of constant light and light pulses on the circadian rhythm in the eye ofAplysia . J. Comp. Physiol. 90, 33–45 (1974). https://doi.org/10.1007/BF00698365

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698365

Keywords

Navigation