Skip to main content
Log in

The effect of training and various work loads on the lactacid-alactacid oxygen debt response of exercising dogs

  • Published:
Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie Aims and scope Submit manuscript

Summary

The involvement of the lactacid and alactacid mechanisms in oxygen debt was examined in 2 dogs prior to and after a 6-week training program by using tryptophan and quinolinic acid to block the removal of lactate by the liver. The results show that the lactacid mechanism is involved at work loads resulting in sufficient elevation of blood lactate during the recovery period. It was further shown that training produced a significant decrease in both oxygen debt and blood lactate. Mechanisms responsible for the findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Arcos, J. C., Sohal, R. S., Sun, S., Argus, M. F., Buroh, G. E.: Changes in ultrastructure and respiratory control in mitochondria of rat heart hypertrophied by exercise. Exp. molec. Path.8, 49–65 (1968).

    Google Scholar 

  2. Baldwin, K. M.: Oxygen debt and efficiency relationships following treadmill running. Proc. National College Physical Education Assoc. for Men. pg. 84–86, 1966.

  3. Barnard, R. J., Foss, M. L., Tipton, C. M.: Oxygen debt: Involvement of the Cori cycle. Int. Z. angew. Physiol.28, 105–119 (1970).

    Google Scholar 

  4. Bergström, J.: Local changes of ATP and phosphorylcreatine in human muscle tissue in connection with exercise. Circulat. Res.20 and21 (Suppl. I), 91–98 (1967).

    Google Scholar 

  5. Carlsten, A., Hallgren, B., Jagenburg, R., Svanborg, A., Werko, L.: Myocardial metabolism of glucose, lactic acid, amino acids, and fatty acids in healthy human individuals at rest and at different work loads. Scand. J. clin. Lab. Invest.13, 418–428 (1961).

    Google Scholar 

  6. Consolazio, C. F., Johnson, R. E., Pecora, L. J.: Physiological Measurement of Metabolic Function in Man. pg. 8. New York: McGraw-Hill 1963.

    Google Scholar 

  7. Crescitelli, F., Taylor, C.: The lactic response and its relationship to physical fitness. Amer. J. Physiol.141, 630–640 (1944).

    Google Scholar 

  8. Dill, D. B., Talbott, J. H., Edwards, M. T.: The response of several individuals to a fixed task. J. Physiol. (Lond.)69, 267–305 (1930).

    Google Scholar 

  9. Eggleton, M. G., Evans, C. L.: The lactic acid content of the blood after muscular contraction under experimental conditions. J. Physiol. (Lond.)70, 269–293 (1930).

    Google Scholar 

  10. Foss, M. L., Barnard, R. J.: A vest to protect exposed chronic implants in dogs. Lab. Animal Care19, 113–114 (1969).

    Google Scholar 

  11. Freyschuss, U., Strandell, T.: Limb circulation during arm and leg exercise in supine position. J. appl. Physiol.23, 163–170 (1967).

    Google Scholar 

  12. Glick, J. L.: Effects of exercise on oxidative activities in rat liver mitochondria. Amer. J. Physiol.210, 1215–1221 (1966).

    Google Scholar 

  13. —, Brunk, J. B.: The effect of exercise on the rate of oxygen uptake in rat liver mitochondria. Biochim. biophys. Acta (Amst.)82, 165–167 (1964).

    Google Scholar 

  14. Gollnick, P. D., King, W.: The immediate and chronic effect of exercise on the number and structure of skeletal muscle mitochondria. Abstract from International Symposium on Exercise Biochemistry. Brussels, Belgium, number61, pg. 26, 1968.

    Google Scholar 

  15. —, Struck, P. J., Bogyo, T. P.: Lactic dehydrogenase activities of rat heart and skeletal muscle after exercise and training. J. appl. Physiol.22, 623–627 (1967).

    Google Scholar 

  16. Gould, M. K., Rawlinson, W. A.: Biochemical adeptation as a response to exercise I. Effect of swimming on the levels of lactic dehydrogenase, malic dehydrogenase, and phosphorylase in muscles of 8, 11 and 15 week old rats. Biochem. J.73, 41–44 (1959).

    Google Scholar 

  17. Harris, P., Bateman, M., Gloster, J.: The regional metabolism of lactate and pyruvate during exercise in patients with rheumatic heart disease. Clin. Sci.23, 545–560 (1962).

    Google Scholar 

  18. Henry, F. M.: Aerobic oxygen consumption and alactic debt in muscular work. J. appl. Physiol.3, 427–438 (1951).

    Google Scholar 

  19. —, Berg, W. H.: Physiological and performance changes in athletic conditioning. J. appl. Physiol.3, 103–111 (1950).

    Google Scholar 

  20. Holloszy, J. O.: Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. biol. Chem.242, 2278–2282 (1967).

    Google Scholar 

  21. Huckabee, W. E.: Relationship of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O2 debt. J. clin. Invest.37, 255–263 (1958).

    Google Scholar 

  22. Kayne, H. L., Alpert, N. R.: Oxygen consumption following exercise in the anesthetized dog. Amer. J. Physiol.206, 51–56 (1964).

    Google Scholar 

  23. Keul, J., Doll, E., Steim, H., Fleer, U., Reindell, H.: Über den Stoffwechsel des menschlichen Herzens. III. Der oxydative Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pflügers Arch. ges. Physiol.282, 43–53 (1965).

    Google Scholar 

  24. Levy, M. N.: Uptake of lactate and pyruvate by intact kidney of the dog. Amer. J. Physiol.202, 302–308 (1962).

    Google Scholar 

  25. Marbach, E. P., Weil, M. H.: Rapid enzymatic measurement of blood lactate and pyruvate. Clin. Chem.13, 314–325 (1967).

    Google Scholar 

  26. Margaria, R., Edwards, H. T., Dill, D. B.: The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Amer. J. Physiol.106, 689–715 (1933).

    Google Scholar 

  27. —: The biochemistry of muscular contraction and recovery. J. Sport Med. (Torino)3, 145 (1963).

    Google Scholar 

  28. Robinson, S., Harmon, P. M.: The lactic acid mechanism and certain properties of blood in relation to training. Amer. J. Physiol.132, 757–769 (1941).

    Google Scholar 

  29. Rowell, L. B., Brengelmann, G. L., Blackmon, J. R., Twiss, R. D., Kusumi, F.: Splanchnic blood flow and metabolism in heat stressed man. J. appl. Physiol.24, 475–484 (1968).

    Google Scholar 

  30. —, Kraning II, K. K., Evans, T. O., Kennedy, J. W., Blackmon, J. R., Kusumi, K.: Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J. appl. Physiol.21, 1773–1783 (1966).

    Google Scholar 

  31. Wasserman, K., Burton, G. G., van Kessell, A. L.: Excess lactate concept and oxygen debt concept of exercise. J. appl. Physiol.20, 1299–1306 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, R.J., Baldwin, K.M. The effect of training and various work loads on the lactacid-alactacid oxygen debt response of exercising dogs. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 28, 120–130 (1970). https://doi.org/10.1007/BF00698051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00698051

Key-Words

Navigation