Skip to main content
Log in

Die Atmung beim KolibriAmazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen

Respiration in the hummingbirdAmazilia fimbriata during hovering at different ambient temperatures

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

In hovering hummingbirds (Amazilia fimbriata fluviatilis, mean weight 5.7 g) oxygen consumption, CO2 production, breathing frequency, respiratory water loss and wing frequency were measured at various environmental temperatures from 0 to 35 ° C.

The oxygen consumption above 20 ° C reached 4.1 ml/min = 43 ml/g·hr, and was 14 times the calculated basal rate. Oxygen consumption increased about 6% for a 10 ° C fall in environmental temperature (Fig. 3). During flight the thermoregulatory heat production at low temperatures was largely substituted by the heat that is produced by contraction of the wing muscles.

The respiratory frequency was estimated to be 280/min, the tidal volume 0.63 ml (BTS), the ventilation 0.18 1/min (BTS) and the oxygen utilization as 2.2%.

The respiratory heat loss at temperatures of 20 ° C and below was less than 20% of the heat production, while at 35 ° C a maximum loss of 40% was reached (Fig. 6). In dry air at 0–20° C the water loss measured 2.9 to 4.5% of body weight per hour while at 35 ° C the loss was 11%. At 0 ° C the respiratory water loss and metabolic water production were equal, but at all other temperatures the loss exceeded production (at 35 ° C the loss exceeded production by 350%).

Zusammenfassung

An schwirrenden Kolibris (Amazilia fimbriata fluviatilis, mittleres Gewicht 5,7 g) wurden O2-Verbrauch, CO2-Produktion, Atemfrequenz, respiratorische Wasserabgabe und Flügelschlagfrequenz gemessen. Die Versuche wurden bei Temperaturen von 0–35 ° C durchgeführt.

Der O2-Verbrauch im Plug bei Temperaturen über 20 ° C beträgt 4,1 ml O2/min= 43 ml O2/g·h, was das 14fache des Basalstoffwechsels ist. Bei Erniedrigung der Umgebungstemperatur nimmt der O2-Verbrauch kontinuierlich um etwa 6% je 10 ° C zu (Abb. 3). Es wird beim Schwirrflug eine weitgehende Substitution der thermoregulatorisch notwendigen Wärmeproduktion durch die bei der Kontraktion der Flugmuskeln entstehende Wärmemenge angenommen.

Es wurde die Atemfrequenz mit rund 280/min bestimmt, das Atemzugvolumen mit 0,63 ml (BTS), die Ventilation mit 0,18 l/min (BTS) und die Sauerstoffausnutzung mit 2,2% errechnet.

Die respiratorische Wärmeabgabe beträgt bei Temperaturen bis 20 ° C weniger als 20% der Wärmeproduktion, bei 35 ° C wurde das Maximum von 40% gemessen (Abb. 6). Bei trockener Luft macht die respiratorische Wasserabgabe 2,9–4,6% (0–20 ° C) bzw. rund 11% (bei 35 ° C) des Körpergewichtes pro Stunde aus. Bei 0 ° C gleichen sich Wasserproduktion durch Stoffwechselvorgänge und respiratorische Abgabe, bei allen anderen Temperaturen überwiegt die Abgabe: bei 35 ° C beträgt der Netto verlast 350% der Produktion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Berger, M., Hart, J. S.: Ein Beitrag zum Zusammenhang zwischen Stimme und Atmung bei Vögeln. J. Ornithol.109, 421–424 (1968).

    Google Scholar 

  • Berger, M., Hart, J. S.: Physiology and energetics of flight. In: Farner, D. S., and King, J. R. (Hrsg.), Avian biology, Bd. 4, Kap. 38, New York: Academic Press.

  • Berger, M., Hart, J. S., Roy, O. Z.: Respiration, oxygen consumption and heart rate in some birds during rest and flight. Z. vergl. Physiol.66, 201–214 (1970).

    Google Scholar 

  • Berger, M., Hart, J. S., Roy, O. Z.: Respiratory water and heat loss of the Black Duck during flight at different ambient temperatures. Canad. J. Zool.49, 767–774 (1971).

    Google Scholar 

  • Berger, M., Roy, O. Z., Hart, J. S.: The co-ordination between respiration and wing beats in birds. Z. vergl. Physiol.66, 190–200 (1970).

    Google Scholar 

  • Calder, W. A.: Respiratory and heart rates of birds at rest. Condor70, 358–365 (1968).

    Google Scholar 

  • Greenwald, L., Stone, W. B., Cade, T. J.: Physiological adjustment of the Budgerygah (Melopsittacus undulatus) to dehydrating conditions. Comp. Biochem. Physiol.22, 91–100 (1967).

    Google Scholar 

  • Hainsworth, F. R., Wolf, L. L.: Resting, torpid, and flight metabolism of the hummingbird,Eulampis jugularis. Amer. Zoologist9, 1100–1101 (1969).

    Google Scholar 

  • Hart, J. S., Berger, M.: Energetics, water economy and temperature regulation during flight. Proc. XV. Cong. Int. Orn. Den Haag 1970. Leiden: Brill 1972.

    Google Scholar 

  • Hart, J. S., Roy, O. Z.: Respiratory and cardiac responses to flight in pigeons. Physiol. Zool.39, 291–305 (1966).

    Google Scholar 

  • Heinrich, B.: Temperature regulation of the Sphinx Moth,Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. exp. Biol.54, 141–152 (1971).

    Google Scholar 

  • Hertel, H.: Struktur, Form, Bewegung. Mainz: Krausskopf 1963.

    Google Scholar 

  • Kleiber, M.: Conductivity, conductance and transfer constant for animal heat. Fed. Proc.29, 660 abs. (1970).

    Google Scholar 

  • Lasiewski, R. C.: The energetic cost of small size in hummingbirds. Proc. XIII. Int. Orn. Cong., 1096–1103 (1963a).

  • Lasiewski, R. C.: Oxygen consumption of torpid, resting, active, and flying hummingbirds. Physiol. Zool.36, 122–140 (1963b).

    Google Scholar 

  • Lasiewski, R. C.: Body temperatures, heart and breathing rate, and evaporative water loss in hummingbirds. Physiol. Zool37, 212–223 (1964).

    Google Scholar 

  • Lasiewski, R. C., Calder, W. A.: A preliminary allometric analysis of respiratory variables in resting birds. Resp. Physiol.11, 152–166 (1971).

    Google Scholar 

  • Lasiewski, R. C., Lasiewski, R. J.: Physiological responses of the Blue-throated and Rivoli's Hummingbird. Auk84, 34–48 (1967).

    Google Scholar 

  • Lasiewski, R. C., Weathers, W. W., Bernstein, M. H.: Physiological responses of the Giant Hummingbird,Patagona gigas. Comp. Biochem. Physiol.23, 797–813 (1967).

    Google Scholar 

  • Morrison, P. R.: Modification of body temperature by activity in Brazilian hummingbirds. Condor64, 315–323 (1962).

    Google Scholar 

  • Pearson, O. P.: The metabolism of hummingbirds. Condor52, 145–152 (1950).

    Google Scholar 

  • Pennycuick, C. J.: Power requirements for horizontal flight in the pigeonColumba livia. J. exp. Biol.49, 527–555 (1968).

    Google Scholar 

  • Piiper, J., Drees, F., Scheid, P.: Gas exchange in the domestic fowl during spontaneous berathing and artificial ventilation. Resp. Physiol.9, 234–245 (1970).

    Google Scholar 

  • Ruschi, A.: Observacoes sobre trochilideos. Bol. Mus. Biol. Santa Thereza1 (No 7) (1949).

  • Scharnke, H.: Experimentelle Beiträge zur Kenntnis der Vogelatmung. Z. vergl. Physiol.25, 548–583 (1938).

    Google Scholar 

  • Schmidt-Nielsen, K., Hainsworth, F. R., Murrish, D. E.: Counter-current heat exchange in the respiratory passages: effect on water and heat balance. Resp. Physiol.9, 263–276 (1970).

    Google Scholar 

  • Tucker, V. A.: Respiratory exchange and evaporative water loss in the flying budgerigar. J. exp. Biol.48, 67–87 (1968).

    Google Scholar 

  • Weis-Fogh, T.: Energetics of hovering flight in hummingbirds and inDrosophila. J. exp. Biol.56, 79–104 (1972).

    Google Scholar 

  • Zeuthen, E., The ventilation of the respiratory tract in birds. Kgl. danske Videnskap. Selskab, biol. Medd.17, No 1 (1942).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. Jürgen Aschoff zum 60. Geburtstag gewidmet.

N.R.C.C. Nr. 12844.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M., Hart, J.S. Die Atmung beim KolibriAmazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J. Comp. Physiol. 81, 363–380 (1972). https://doi.org/10.1007/BF00697756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00697756

Navigation