Skip to main content
Log in

Fluorescence quenching of poly(methylphenylsilane) in solution

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

The solution, electron-transfer fluorescence quenching of a typical aromatic polysilane[poly(methylphenylsilane)] by a series of electronic deficient aromatic monomers is described. The rate of fluorescence quenching is a function of the reduction potential of the quencher, and only very fast processes can be observed, due to the short polymer fluorescence lifetime. The measurement of quenching rate constants, which are considerably larger than diffusion control, suggests that extensive energy migration occurs in the polymer. Although the fluorescence quenching at low quencher concentrations follows Stern-Volmer kinetics, at high concentrations, contributions from static quenching are apparent. Strong fluorescence quenching can either accelerate or inhibit photodegradation, depending on the structure of the quencher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Miller and J. Michl,Chem. Rev. 89, 1359 (1989) and references cited therein.

    Google Scholar 

  2. J. M. Ziegler and F. W. G. Fearon, eds.,Silicon Based Polymer Science, Advances in Chemistry Series 224 American Chemical Society, Washington, D.C., 1990), and references cited therein.

    Google Scholar 

  3. P. Trefonas, R. West, R. D. Miller, and D. Hofer,J. Polym. Sci. Polym. Lett. Ed. 21, 823 (1983).

    Google Scholar 

  4. R. D. Miller, J. F. Rabolt, R. Sooriyakumaran, W. Fleming, G. N. Fickes, B. L. Farmer, and H. Kuzmany, inInorganic and Organometallic Polymers, ACS Symposium Series 360, M. Zeldin, K. J. Wynne, and H. R. Allcock, eds. (American Chemical Society, Washington, D.C., 1989), Chap. 4.

    Google Scholar 

  5. P. Trefonas, III, J. R. Damewood, Jr., W. West, and R. D. Miller,Organometallics 4, 1318 (1985).

    Google Scholar 

  6. L. A. Harrah and J. M. Zeigler,J. Polym. Sci., Polym. Lett. Ed. 23, 209 (1985).

    Google Scholar 

  7. L. A. Harrah and J. M. Zeigler, inPhotophysics of Polymers, ACS Symposium Series 358, C. E. Hoyle and J. M. Torkelson, eds. (American Chemical Society, Washington, D.C., 1987), p. 482.

    Google Scholar 

  8. G. E. Johnson and K. M. McGrane, inPhotophysics of Polymers, ACS Symposium Series 358, C. E. Hoyle and J. M. Tokelson, eds. (American Chemical Society, Washington, D.C., 1987), p. 499.

    Google Scholar 

  9. Y.-P. Sun, R. D. Miller, R. Sooriyakumaran, and J. Michl,J. Inorgan. Organomet. Polym. 1(1), 3 (1991).

    Google Scholar 

  10. R. D. Miller, D. Hofer, J. F. Rabolt, R. Sooriyakumaran, C. G. Willson, G. N. Fickes, J. E. Guillet, and J. Moore, inPolymers for High Technology: Electronics and Photonics, ACS Symposium Series 346, M. J. Bowden and S. R. Turner, eds. (ACS, Washington, D.C., 1987), Chap. 15, and references cited therein.

    Google Scholar 

  11. G. M. Wallraff, R. D. Miller, N. Clecak, and M. Baier,Proceedings of SPIE, Symposium on Microlithography (1991) (in press).

  12. J. M. Zeigler, L. A. Harrah, and A. W. Johnson,Proceedings of SPIE (1985), Vol. 539, p. 16.

    Google Scholar 

  13. J. Michl,Acc. Chem. Res. 23, 128 (1990).

    Google Scholar 

  14. K. A. Klingensmith, J. W. Downing, R. D. Miller, and J. Michl,J. Am. Chem. Soc. 108, 7438 (1986).

    Google Scholar 

  15. J. Michl, J. W. Downing, T. Karatsu, K. A. Klingensmith, G. M. Wallraff, and R. D. Miller, inInorganic and Organometallic Polymers, ACS Symposium Series 360, M. Zeldin, K. R. Wynne, and H. R. Allcock, eds. (American Chemical Society, Washington, D.C., 1988), Chap. 5.

    Google Scholar 

  16. Y. R. Kim, M. Lee, J. R. G. Thorne, R. M. Hochstrasser, and J. M. Zeigler,Chem. Phys. Lett. 145, 75 (1988).

    Google Scholar 

  17. A. Tilgner, H. P. Trommsdorff, J. M. Zeigler, and R. M. Hochstrasser,J. Lumin. 45, 373 (1990).

    Google Scholar 

  18. H. P. Trommsdorff, J. M. Zeighler, and R. M. Hochstrasser,J. Chem. Phys. 89(7), 4440 (1988).

    Google Scholar 

  19. A. F. Diaz and R. D. Miller,J. Electrochem. Soc. 132, 834 (1985).

    Google Scholar 

  20. A. F. Diaz, M. Baier, G. M. Wallraff, R. D. Miller, J. Nelson, and W. Pietro,J. Electrochem. Soc. 138, 742 (1991).

    Google Scholar 

  21. R. D. Miller, inSilicon Based Polymer Science, Advances in Chemistry Series 224, J. M. Ziegler and F. W. G. Fearon, eds. (American Chemical Society, Washington, D.C., 1990), Chap. 24.

    Google Scholar 

  22. T. Karatsu, R. D. Miller, R. Sooriyakumaran, and J. Michl,J. Am. Chem. Soc. 111, 1140 (1989).

    Google Scholar 

  23. A. J. McKinley, T. Karatsu, G. M. Wallraff, D. P. Thompson, R. D. Miller, and J. Michl,J. Am. Chem. Soc. 113, 2003 (1991).

    Google Scholar 

  24. J. Michl, J. W. Downing, T. Karatsu, A. J. McKinley, G. Poggi, G. M. Wallraff, R. Sooriyakumaran, and R. D. Miller,Pure Appl. Chem. 60, 959 (1988).

    Google Scholar 

  25. R. D. Miller, G. M. Wallraff, M. Baier, and N. Clecak,Polym. Prepr. 32(2) (1991) (in press).

  26. R. D. Miller, D. Thompson, R. Sooriyakumaran, and G. N. Fickes,J. Polym. Sci. Part A Polym. Chem. 29, 813 (1991).

    Google Scholar 

  27. K. Wakabayashi, M. Tsunodai, and Y. Suzuki,Bull. Chem. Soc. Jap. 42, 2924 (1969).

    Google Scholar 

  28. T. B. Chapman and E. A. Freedman,J. Org. Chem. 38, 3908 (1973).

    Google Scholar 

  29. N. J. Turro, inModern Molecular Photochemistry (Benjamin/Cummings, Menlo Park, Calif., 1978), p. 246ff.

    Google Scholar 

  30. D. Rehm and A. Weller,Isr. J. Chem. 8, 259 (1970).

    Google Scholar 

  31. G. J. Kavarnos and N. J. Turro,Chem. Rev. 86, 401 (1986).

    Google Scholar 

  32. Y. Nakadaira, N. Komatsu, and H. Sakurai,Chem. Lett. 1781 (1985).

  33. K. A. Horn and A. A. Whitenack,J. Phys. Chem. 92, 3875 (1988).

    Google Scholar 

  34. J. E. Guillet, inPolymer Photophysics and Photochemistry (Cambridge University Press, Cambridge, 1985), Chap. 3.

    Google Scholar 

  35. A. C. Somersall and J. E. Guillet,Macromolecules 5, 410 (1972).

    Google Scholar 

  36. L. Moldovan and G. Weil,Eur. Polym. J. 7, 1023 (1971).

    Google Scholar 

  37. J. R. Lakowitz,Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983), p. 266.

    Google Scholar 

  38. Ref. 34,, Chap. 9.

    Google Scholar 

  39. Ref. 29,, p. 246ff.

    Google Scholar 

  40. S. E. Webber, inNew Trends in the Photochemistry of Polymers, N. S. Allen and J. F. Rabek, eds. (Elsevier, London, 1985), p. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallraff, G.M., Baier, M., Diaz, A. et al. Fluorescence quenching of poly(methylphenylsilane) in solution. J Inorg Organomet Polym 2, 87–102 (1992). https://doi.org/10.1007/BF00696538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696538

Key words

Navigation