Archives of Microbiology

, Volume 99, Issue 1, pp 255–263 | Cite as

Site of mannan synthesis in yeast

An autoradiographic study
  • A. Košinová
  • V. Farkaš
  • S. Machala
  • Š. Bauer
Article

Abstract

The combination of high-resolution autoradiography and biochemical methods has been used to ascertain the site of mannan synthesis in the yeastSaccharomyces cerevisiae. High-resolution autoradiography has been performed under conditions when addedd-mannose-3H was incorporated exclusively into mannan. Application of “pulse-chase” labelling technique revealed that the radio-active mannose is fixed primarily in the cytoplasmic space from where it is transported into the cell wall. Additional experiments with separated membrane fractions from the same yeast strongly support the hypothesis that the plasmalemma is not directly involved in the biosynthesis of yeast mannan and that the membranes of the endoplasmic reticulum are the sites where the polymerization of mannosyl units takes place.

Key words

Mannan Synthesis Saccharomyces cerevisiae Autoradiography Cell Wall Yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algranati, I. D., Carminatti, H., Cabib, É.: The enzymic synthesis of yeast mannan. Biochem. biophys. Res. Commun.12, 504–509 (1963)Google Scholar
  2. Amano, M., Leblond, C. P., Nadler, N. J.: Radioautographic analysis of nuclear RNA in mouse cells revealing three pools with different turnover times. Exp. Cell Res.38, 314–340 (1965)Google Scholar
  3. Behrens, N. H., Cabib, E.: The biosynthesis of mannan inSaccharomyces carlsbergensis. J. biol. Chem.243, 502–509 (1968)Google Scholar
  4. Biely, P., Kovařík, J., Bauer, Š.: Lysis ofSaccharomyces cerevisiae with 2-deoxy-2-fluoro-d-glucose, an inhibitor of the cell wall glucan synthesis. J. Bact.115, 1108–1120 (1973a)Google Scholar
  5. Biely, P., Kovařík, J., Bauer, Š.: Cell wall formation in yeast. An electron microscopic autoradiographic study. Arch. Microbiol.94, 365–371 (1973b)Google Scholar
  6. Brock' T. D.: β-Glucanase of yeast. Biochem. biophys. Res. Commun.19, 623–629 (1965)Google Scholar
  7. Coimbra, A., Leblond, C. P.: Sites of glycogen synthesis in rat liver cells as shown by electron microscope radioautography after administration of glucose-3H. J. Cell Biol.30, 151–175 (1966)Google Scholar
  8. Cortat, M., Matile, P., Kopp, F.: Intracellular localization of mannan synthetase activity in budding baker's yeast. Biochem. biophys. Res. Commun.53, 482–489 (1973)Google Scholar
  9. Cortat, M., Matile, P., Wiemken, A.: Isolation of glucanase-containing vesicles from budding yeast. Arch. Mikrobiol.82, 189–205 (1972)Google Scholar
  10. Dubé, J., Setterfield, G., Kiss, G., Lusena, C. V.: Fate of plasma membrane ofSaccharomyces cerevisiae during cell rupture. Canad. J. Microbiol.19, 285–290 (1973)Google Scholar
  11. Farkaš, V., Kovařík, J., Košinová, A., Bauer, Š.: Autoradiographic study of mannan incorporation into the growing cell walls ofSaccharomyces cerevisiae. J. Bact.117, 265–269 (1974)Google Scholar
  12. Havelková, M., Menšík, P.: The Golgi apparatus in the regenerating protoplasts ofSchizosaccharomyces. Naturwissenschaften21, 562 (1966)Google Scholar
  13. Kopecká, M.: Dyctiosomes in the yeastSchizosaccharomyces pombe. Antonie v. Leeuwenhoek38, 27–31 (1972)Google Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem.193, 265–275 (1951)Google Scholar
  15. Marquardt, H.: Der Feinbau von Hefezellen im Elektronenmikroskop. II. Mitt.:Saccharomyces cerevisiae-Stämme. Z. Naturforsch.17b, 689–695 (1962)Google Scholar
  16. Matile, P., Moor, H., Mühlethaler, K.: Isolation and properties of the plasmalemma in yeast. Arch. Mikrobiol.58, 201–211 (1967)Google Scholar
  17. Moor, H.: Endoplasmic reticulum as the initiator of bud formation in yeast (S. cerevisiae). Arch. Mikrobiol.57, 135–146 (1967)Google Scholar
  18. Moor, H., Mühlthaler, K.: Fine structure in frozen-etched yeast cells. J. Cell Biol.17, 609–628 (1963)Google Scholar
  19. Neutra, M., Leblond, C. P.: Radioautographic comparison of the uptake of galactose-3H and glucose-3H in the Golgi region of various cells secreting glycoprotein or mucopolysaccharides. J. Cell Biol.30, 137–150 (1966)Google Scholar
  20. Northcote, D. H., Pickett-Heaps, J. D.: A function of Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem. J.98, 159–167 (1966)Google Scholar
  21. Peterson, M., Leblond, C. P.: Synthesis of complex carbohydrates in the Golgi region, as shown by radioautography after injection of labelled glucose. J. Cell Biol.21, 143–148 (1964)Google Scholar
  22. Pickett-Heaps, J. D.: Xylem wall deposition. Radioautographic investigations using lignin precursors. Protoplasma (Wien)65, 181–205 (1968)Google Scholar
  23. Revel, J. P., Hay, E. D.: Autoradiographic localization of DNA synthesis in a specific ultrastructural component of the interphase nucleus. Exp. Cell Res.25, 474–480 (1961)Google Scholar
  24. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–213 (1963)Google Scholar
  25. Svoboda, A., Smith, D. G.: Inhibitory effect of 2-deoxyglucose on cell wall synthesis in cells and protoplasts ofSchizosaccharomyces pombe. Z. allg. Mikrobiol.12, 685–699 (1972)Google Scholar
  26. Tkacz, J. S., Lampen, J. O.: Wall replication inSaccharomyces species: Use of fluorescein-conjugated concanavalin A to reveal the site of mannan insertion. J. gen. Microbiol.72, 243–247 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • A. Košinová
    • 1
  • V. Farkaš
    • 1
  • S. Machala
    • 1
  • Š. Bauer
    • 1
  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislava

Personalised recommendations