Journal of comparative physiology

, Volume 89, Issue 1, pp 83–92 | Cite as

Detection of polarized light by the homing pigeon,Columba livia

  • Melvin L. Kreithen
  • William T. Keeton


Of 12 homing pigeons tested, four could be trained to discriminate between a linearly polarized light source with a rotating axis of polarization and the same light source with a stationary axis of polarization. Initially, all 12 pigeons were trained to discriminate between rotating and nonrotating crosshairs. The crosshairs were gradually faded until only polarized light remained. The response was a classically conditioned increase in heart rate. An additional control series was performed using neutral density filters. This is the first evidence for polarized light detection in birds.


Heart Rate Light Source Additional Control Control Series Neutral Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, K., Taylor, D. H.: Extraocular perception of polarized light by orienting salamanders. J. comp. Physiol.87, 203–212 (1973)Google Scholar
  2. Binns, A. L.: Sun navigation in the viking age, and the Canterbury portable sundial. Acta archeol.42, 23–24 (1971)Google Scholar
  3. Binns, A. L.: Review of Solstenen. Medieval Scandinavia5, 139–140 (1972)Google Scholar
  4. Blough, P. M.: The visual acuity of the pigeon for distant targets. J. exp. Anal. Behav.15, 57–67 (1971)Google Scholar
  5. Catania, A. C.: On the visual acuity of the pigeon. J. exp. Anal. Behav.7, 361–366 (1964)Google Scholar
  6. Chard, R. D.: Visual acuity in the pigeon. J. exp. Psychol.24, 588–608 (1939)Google Scholar
  7. Denton, E. J.: The contributions of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. roy. Soc. B150, 78–94 (1959)Google Scholar
  8. Dill, P. A.: Perception of polarized light by yearling sockeye salmon (Oncorhynchus nerka). J. Fisheries Res. Board Canada38, 1319–1322 (1971)Google Scholar
  9. Dixon, W. J., Massey, F. J., Jr.: Introduction to statistical analysis, 2nd ed., 488 p. New York: McGraw-Hill 1957Google Scholar
  10. Frisch, K. von: The dance language and orientation of bees; 566 p. Cambridge: Belknap Press 1967Google Scholar
  11. Groot, C.: On the orientation of young Sockeye Salmon (Oncorhynchus nerka) during their seaward migration out of lakes. Behaviour Suppl.14, 198 pp. (1965)Google Scholar
  12. Gundlach, R. H., Chard, R. D., Skahen, J. R.: The mechanism of accommodation in pigeons. J. comp. Psychol.38, 27–42 (1945)Google Scholar
  13. Haidinger, W.: Über das direkte Erkennen des polarisierten Lichts. Ann. Physick. Chem.63, 29 (1844)Google Scholar
  14. Hallden, U.: An explanation of Haidinger's brushes. Arch. Opthal.57, 393–399 (1957)Google Scholar
  15. Helmholtz, H. von: Handbook of physiological optics, 3rd ed. (Reprinted 1940 by Dover, New York) 1909Google Scholar
  16. Keeton, W. T.: Orientation by pigeons: Is the sun necessary? Science165, 922–928 (1969)Google Scholar
  17. Keeton, W. T.: Magnets interfere with pigeon homing. Proc. nat. Acad. Sci. (Wash.)68, 102–106 (1971)Google Scholar
  18. Kleerekoper, H., Matis, J. H., Timms, A. M., Gensler, P.: Locomotor response of the goldfish to polarized light and itse-vector. J. comp. Physiol.86, 27–36 (1973)Google Scholar
  19. Kramer, G.: Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften37, 377–378 (1950)Google Scholar
  20. Kreithen, M., Keeton, W. T.: Detection of changes in atmospheric pressure by the homing pigeon,Columba livia. J. comp. Physiol.89, 73–82 (1974)Google Scholar
  21. Montgomery, K. C., Heinemann, E. G.: Concerning the ability of homing pigeons to discriminate patterns of polarized light. Science116, 454–456 (1952)Google Scholar
  22. Pumphrey, R. J.: The theory of the fovea. J. exp. Biol.25, 229–312 (1948)Google Scholar
  23. Ramskou, T.: Ret Kurs. Skalk6, 27–29 (1966)Google Scholar
  24. Ramskou, T.: Solstenen, Primitiv Navigation I Norden foi Kompasset, 96 p. Copenhagen: Rhodos 1969Google Scholar
  25. Schmidt, W. J.: Doppelbrechung, Dichroismus und Feinbau des Außengliedes der Sehzellen vom Frosch. Z. Zellforsch.22, 485–522 (1935)Google Scholar
  26. Schmidt, W. J.: Polarisationsoptische Analyse des Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z.85, 137–148 (1938)Google Scholar
  27. Schmidt-Koenig, K.: Die Sonne als Kompass im Heim-Orientierungssystem der Brieftauben. Z. Tierpsychol.18, 221–224 (1961)Google Scholar
  28. Shurcliff, W. A.: Polarized light: Production and use. Cambridge: Harvard Univ. Press 1962Google Scholar
  29. Smelser, G. K. ed.: The structure of the eye. Proc. 7th International Congress of Anatomists. New York: Academic Press 1961Google Scholar
  30. Tansley, K.: Vision in vertebrates. London: Chapman and Hall 1965Google Scholar
  31. Taylor, D. H., Adler, K.: Spatial orientation of salamanders by plane polarized light. Science181, 285–287 (1973)Google Scholar
  32. U.S. National Bureau of Standards: Sky compass. Rev. Sci. Instr.20, 460 (1949)Google Scholar
  33. Wald, G. Brown, P. K. Gibbons, I. R.: Visual excitation: a chemo-anatomical study. Symp. Soc. Exp. Biol.16, 32–57 (1962)Google Scholar
  34. Waterman, T. H.: Section 36. Responses to polarized light. In: Altman, P. L., Dittmer, D. S. (eds.), Environmental biology. Bethesda: FASEB 1966Google Scholar
  35. Waterman, T. H., Forward, R. B., Jr.: Field demonstration of polarotaxis in the fishZenarchopterus. J. exp. Zool.180, 33–34 (1972)Google Scholar
  36. Waterman, T. H., Horch, K. W.: Mechanism of polarized light perception. Science154, 467–475 (1966)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Melvin L. Kreithen
    • 1
  • William T. Keeton
    • 1
  1. 1.Division of Biological Sciences, Langmuir LaboratoryCornell UniversityIthaca

Personalised recommendations